分析 (1)根据角平分线的性质得到CE=CF,∠F=∠CEB=90°,即可得到结论;
(2)由CE⊥AB于E,CF⊥AD于F,得到∠F=∠CEA=90°,推出Rt△FAC≌Rt△EAC,根据全等三角形的性质得到AF=AE,由△BCE≌△DCF,得到BE=DF,于是得到结论.
解答 (1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,
∴CE=CF,∠F=∠CEB=90°,
在Rt△BCE和Rt△DCF中,
$\left\{\begin{array}{l}{BC=DC}\\{CE=CF}\end{array}\right.$
∴△BCE≌△DCF;
(2)解:∵CE⊥AB于E,CF⊥AD于F,
∴∠F=∠CEA=90°,
在Rt△FAC和Rt△EAC中,
$\left\{\begin{array}{l}{AC=AC}\\{CE=CF}\end{array}\right.$,
∴Rt△FAC≌Rt△EAC,
∴AF=AE,
∵△BCE≌△DCF,
∴BE=DF,
∴AB+AD=(AE+BE)+(AF-DF)
=AE+BE+AE-DF=2AE.
点评 本题考查了全等三角形的判定和性质,考查了全等三角形对应边相等的性质,本题中求证Rt△BCE≌Rt△DCF和RT△ACF≌RT△ACE是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 6cm | B. | 100cm | C. | 15cm | D. | 10cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com