精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为时,四边形AMDN是矩形; ②当AM的值为时,四边形AMDN是菱形.

【答案】
(1)证明:∵四边形ABCD是菱形,

∴ND∥AM,

∴∠NDE=∠MAE,∠DNE=∠AME,

又∵点E是AD边的中点,

∴DE=AE,

∴△NDE≌△MAE,

∴ND=MA,

∴四边形AMDN是平行四边形


(2)1;2
【解析】(2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下: ∵四边形ABCD是菱形,
∴AB=AD=2.
∵AM= AD=1,
∴∠ADM=30°
∵∠DAM=60°,
∴∠AMD=90°,
∴平行四边形AMDN是矩形;
故答案为:1;
②当AM的值为2时,四边形AMDN是菱形.理由如下:
∵AM=2,
∴AM=AD=2,
∴△AMD是等边三角形,
∴AM=DM,
∴平行四边形AMDN是菱形,
故答案为:2.

(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM= AD=1时即可;②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为(
A.1×103
B.1000×108
C.1×1011
D.1×1014

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲班有54人,乙班有48人,要使甲班人数是乙班的2倍,设从乙班调往甲班人数x,可列方程(  )
A.54+x=2(48﹣x)
B.48+x=2(54﹣x)
C.54﹣x=2×48
D.48+x=2×54

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85100;第二组100115;第三组115130;第四组130145;第五组145160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:

1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;

2)若将得分转化为等级,规定:得分低于100分评为“D”100130分评为“C”130145分评为“B”145160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?

3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据统计,2017年五一假日三天,某市共接待游客约为14300000人次,将数14300000用科学记数法表示为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】画图并计算:已知线段AB=2 cm,延长线段AB至点C,使得2BC=AB,再反向延长AC至点D,使得AD=AC.

(1)准确地画出图形,并标出相应的字母;

(2)线段DC的中点是哪个?线段AB的长是线段DC长的几分之几?

(3)求出线段BD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为(
A.2.58×1011
B.2.58×1012
C.2.58×1013
D.2.58×1014

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AOE在同一条直线上,∠AOB=40°COD=28°OD平分∠COE

1)求∠COE的度数.

2)求∠BOD的度数.

查看答案和解析>>

同步练习册答案