【题目】中,,将线段AB绕点A按逆时针方向旋转得到线段AD,其中连结BD,CD,.
若,,在图1中补全图形,并写出m值.
如图2,当为钝角,时,m值是否发生改变?证明你的猜想.
如图3,,,BD与AC相交于点O,求与的面积比.
【答案】(1)m=2(2)m值不发生改变(3)
【解析】
(1)如图1,根据旋转的性质得AB=AD,则AB=AD=AC,于是可判断点B、D、C在以点A为圆心、AB为半径的圆上,则根据圆周角定理可得∠DAC=2∠DBC,即有m=2;
(2)与(1)一样可判断点B、D、C在以点A为圆心、AB为半径的圆上,则根据圆周角定理可得∠DAC=2∠DBC,所以有m=2;
(3)作DH⊥AC于H,如图3,设AB=AC=AD=x,根据等腰直角三角形的性质得∠ABC=45°,利用(2)中的结论和∠DBC+∠DAC=45°可计算出∠DBC=15°,∠CAD=30°,则∠ABD=30°,在△ABO中,根据含30度的直角三角形三边的关系得OB=,,所以OC=AC-A0=,,在Rt△ADH中可计算出DH=,,接着利用三角形面积公式可分别计算出S△OCD= ,S△AOB=,然后计算它们的比值.
解:如图,
线段AB绕点A按逆时针方向旋转得到线段AD,
,
而,
,
点B、D、C在以点A为圆心、AB为半径的圆上,
,
即;
值不发生改变理由与一样;
作于H,如图3,
设,
,,
,
,
而,
,解得,
,,
在中,,
,
,
在中,,
,
,
,
::.
科目:初中数学 来源: 题型:
【题目】如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点P为BC的中点,连接EP,AD.
(1)求证:PE是⊙O的切线;
(2)若⊙O的半径为3,∠B=30°,求P点到直线AD的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2+2x+a﹣2=0.
(1)若该方程有两个不相等的实数根,求实数a的取值范围;
(2)当该方程的一个根为1时,求a的值及方程的另一根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.
(1)若∠BAE=40°,求∠C的度数;
(2)若△ABC的周长为14cm,AC=6cm,求DC长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示表示王勇同学骑自行车离家的距离与时间之间的关系,王勇9点离开家,15点回家,请结合图象,回答下列问题:
到达离家最远的地方是什么时间?离家多远?
他一共休息了几次?休息时间最长的一次是多长时间?
在哪些时间段内,他骑车的速度最快?最快速度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABF中,以AB为直径的圆分别交边AF、BF于C、E两点,CD⊥AF.AC是∠DAB的平分线,
(1)求证:直线CD是⊙O的切线.
(2)求证:△FEC是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系: ;
(2)图2中,当∠D=50度,∠B=40度时,求∠P的度数.
(3)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com