精英家教网 > 初中数学 > 题目详情

【题目】中,,将线段AB绕点A按逆时针方向旋转得到线段AD,其中连结BDCD

,在图1中补全图形,并写出m值.

如图2,当为钝角,时,m值是否发生改变?证明你的猜想.

如图3,BDAC相交于点O,求的面积比.

【答案】(1)m=2(2)m值不发生改变(3)

【解析】

(1)如图1,根据旋转的性质得AB=AD,则AB=AD=AC,于是可判断点B、D、C在以点A为圆心、AB为半径的圆上,则根据圆周角定理可得∠DAC=2∠DBC,即有m=2;
(2)与(1)一样可判断点B、D、C在以点A为圆心、AB为半径的圆上,则根据圆周角定理可得∠DAC=2∠DBC,所以有m=2;
(3)作DH⊥ACH,如图3,设AB=AC=AD=x,根据等腰直角三角形的性质得∠ABC=45°,利用(2)中的结论和∠DBC+∠DAC=45°可计算出∠DBC=15°,∠CAD=30°,则∠ABD=30°,在△ABO中,根据含30度的直角三角形三边的关系得OB=,所以OC=AC-A0=,在Rt△ADH中可计算出DH=,接着利用三角形面积公式可分别计算出SOCD ,SAOB=,然后计算它们的比值.

解:如图

线段AB绕点A按逆时针方向旋转得到线段AD

BDC在以点A为圆心、AB为半径的圆上,

值不发生改变理由与一样;

H,如图3,

,解得

中,

中,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点P为BC的中点,连接EP,AD.

(1)求证:PE是⊙O的切线;
(2)若⊙O的半径为3,∠B=30°,求P点到直线AD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+2x+a﹣2=0.
(1)若该方程有两个不相等的实数根,求实数a的取值范围;
(2)当该方程的一个根为1时,求a的值及方程的另一根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10)如图,△ABC中,ADBCEF垂直平分AC,交AC于点F,交BC于点E,且BDDE,连接AE.

(1)若∠BAE40°,求∠C的度数;

(2)若△ABC的周长为14cmAC6cm,求DC长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,弦AB所对的劣弧是圆周长的 ,其中圆的半径为4cm,求:

(1)求AB的长.
(2)求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示表示王勇同学骑自行车离家的距离与时间之间的关系,王勇9点离开家,15点回家,请结合图象,回答下列问题:

到达离家最远的地方是什么时间?离家多远?

他一共休息了几次?休息时间最长的一次是多长时间?

在哪些时间段内,他骑车的速度最快?最快速度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABF中,以AB为直径的圆分别交边AF、BF于C、E两点,CD⊥AF.AC是∠DAB的平分线,

(1)求证:直线CD是⊙O的切线.
(2)求证:△FEC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:

(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:   

(2)图2中,当∠D=50度,∠B=40度时,求∠P的度数.

(3)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.

查看答案和解析>>

同步练习册答案