精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=﹣x2+2x+m.

(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.

【答案】
(1)解:∵二次函数的图象与x轴有两个交点,

∴△=22+4m>0

∴m>﹣1;


(2)解:∵二次函数的图象过点A(3,0),

∴0=﹣9+6+m

∴m=3,

∴二次函数的解析式为:y=﹣x2+2x+3,

令x=0,则y=3,

∴B(0,3),

设直线AB的解析式为:y=kx+b,

,解得:

∴直线AB的解析式为:y=﹣x+3,

∵抛物线y=﹣x2+2x+3,的对称轴为:x=1,

∴把x=1代入y=﹣x+3得y=2,

∴P(1,2).


(3)解:根据函数图象可知:x<0或x>3.
【解析】(1)根据已知二次函数的图象与x轴有两个交点,可得b2-4ac>0,建立不等式,求解即可。
(2)利用待定系数法,根据点A的坐标即可求出此抛物线的函数解析式,再由y=0,求出抛物线与y轴的交点坐标,再利用待定系数法求出直线AB的解析式,然后将抛物线和一次函数联立解方程组即可求得点P的坐标。
(3)观察函数图像,使一次函数值大于二次函数值,就是看一次函数图像高于二次函数的图像,即可得出x的取值范围。
【考点精析】关于本题考查的确定一次函数的表达式和抛物线与坐标轴的交点,需要了解确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】形如半圆型的量角器直径为4cm,放在如图所示的平面直角坐标系中(量角器的中心与坐标原点O重合,零刻度线在x轴上),连接60°和120°刻度线的一个端点P、Q,线段PQ交y轴于点A,则点A的坐标为(
A.(﹣1,
B.(0,
C.( ,0)
D.(1,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,ACBCEAC边的中点,ADABBE延长线于点DCF平分∠ACBBD于点F,连接CD

求证:(1)ADCF

(2)点FBD的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的内角∠BADCDA的角平分线交于点EABCBCD的角平分线交于点F

1)若∠F=70°,则∠ABC+BCD= ______ °E= ______ °

2)探索∠E与∠F有怎样的数量关系,并说明理由;

3)给四边形ABCD添加一个条件,使得∠E=F,所添加的条件为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)已知:如图1PADC内一点,DPCP分别平分∠ADC和∠ACD,如果∠A=90°,那么∠P=______°;如果∠A=x°,则∠P=____________°;(答案直接填在题中横线上)

2)如图2P为四边形ABCD内一点,DPCP分别平分∠ADC和∠BCD,试探究∠P与∠A+B的数量关系,并写出你的探索过程;

3)如图3P为五边形ABCDE内一点,DPCP分别平分∠EDC和∠BCD,请直接写出∠P与∠A+B+E的数量关系:________________

4)若Pn边形A1A2A3…An内一点,PA1平分∠AnA1A2PA2平分∠A1A2A3,请直接写出∠P与∠A3+A4+A5+…An的数量关系:__________________________.(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角形的三个项点坐标为:内有一点经过平移后的对应点为,将△做同样平移得到△

1)写出三点的坐标:

2)在图中画出△

3)求出△的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】目前,我国大约有1.3亿高血压病患者,预防高血压不容忽视,“千帕”和“毫米汞柱”都是表示血压的单位,请你根据表格提供的信息判断,下列各组换算正确的是(

千帕

10

12

14

毫米汞柱

75

90

105

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细阅读下面例题,解答问题

例题:已知二次三项式x24x+m有一个因式是(x+3),求另一个因式以及m的值.

解:设另一个因式为(x+n),得x24x+m=(x+3)(x+n),

x24x+mx2+n+3x+3n

解得:n=﹣7m=﹣21

∴另一个因式为(x7),m的值为﹣21

问题:

1)若二次三项式x25x+6可分解为(x2)(x+a),则a   

2)若二次三项式2x2+bx5可分解为(2x1)(x+5),则b   

3)仿照以上方法解答下面问题:若二次三项式2x2+3xk有一个因式是(2x5),求另一个因式以及k的值.

查看答案和解析>>

同步练习册答案