精英家教网 > 初中数学 > 题目详情

【题目】形如半圆型的量角器直径为4cm,放在如图所示的平面直角坐标系中(量角器的中心与坐标原点O重合,零刻度线在x轴上),连接60°和120°刻度线的一个端点P、Q,线段PQ交y轴于点A,则点A的坐标为(
A.(﹣1,
B.(0,
C.( ,0)
D.(1,

【答案】B
【解析】解:连接OQ、PO,
则∠POQ=120°﹣60°=60,
∵PO=OQ,
∴△POQ是等边三角形,
∴PQ=OP=OQ= ×4cm=2cm,∠OPQ=∠OQP=60°,
∵∠AOQ=90°﹣60°=30°,
∴∠QAO=180°﹣60°﹣30°=90°,
∴AQ= OQ=1cm,
∵在Rt△AOQ中,由勾股定理得:OA= =
∴A的坐标是(0, ),
故选B.
连接OQ、OP,求出∠POQ的度数,得出等边三角形POQ,得出PQ=OQ=OP=2,∠OPQ=∠OQP=60°,求出∠AOQ度数,根据三角形的内角和定理求出∠QAO,求出AQ、OA,即可得出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小张骑车往返于甲、乙两地,距甲地的路程y(千米)与时间x(时)的函数图象如图所示.

(1)小张在路上停留  小时,他从乙地返回时骑车的速度为   千米/时;

(2)小王与小张同时出发,按相同路线匀速前往乙地,距甲地的路程y(千米)与时间x(时)的函数关系式为y=10x+10.请作出此函数图象,并利用图象回答:小王与小张在途中共相遇   次;

(3)请你计算第三次相遇的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y(毫克)与时间x(分钟)成正比,药物喷洒完后,y与x成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.

(1)求喷洒药物时和喷洒完后,y关于x的函数关系式;
(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?
(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,F是 上一点,且 = ,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=30°,则∠E的度数为(
A.45°
B.50°
C.55°
D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,三点的坐标分别为

1)画出,则的面积为_______

2)在中,点经过平移后的对应点为,将作同样的平移得到,画出平移后的,并写出点的坐标_______);_______);

3中一点,将点向右平移4个单位,再向下平移6个单位得到点,则______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠BOC60°OF平分∠BOC.AOBOOE平分∠AOC,则∠EOF的度数是(  )

A. 45°

B. 15°

C. 30°60°

D. 45°15°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+2x+m.

(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的图象(折线)描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离(千米)与行驶时间(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案