【题目】(1)已知:如图1,P为△ADC内一点,DP、CP分别平分∠ADC和∠ACD,如果∠A=90°,那么∠P=______°;如果∠A=x°,则∠P=____________°;(答案直接填在题中横线上)
(2)如图2,P为四边形ABCD内一点,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B的数量关系,并写出你的探索过程;
(3)如图3,P为五边形ABCDE内一点,DP、CP分别平分∠EDC和∠BCD,请直接写出∠P与∠A+∠B+∠E的数量关系:________________;
(4)若P为n边形A1A2A3…An内一点,PA1平分∠AnA1A2,PA2平分∠A1A2A3,请直接写出∠P与∠A3+A4+A5+…∠An的数量关系:__________________________.(用含n的代数式表示)
【答案】如果∠A=90°,那么∠P=135°;如果∠A=x°,则∠P=(90+)° ∠P=(∠A+∠B) ∠P=(∠A+∠B+∠E)﹣90° ∠P=(∠A3+∠A4+∠A5+…∠An)﹣(n﹣4)×90°
【解析】
(1)根据角平分线的定义和三角形内角和定理,列式整理解答;
(2)根据角平分线的定义和四边形的内角和,列式整理解答;
(3)根据角平分线的定义和五边形的内角和,列式整理解答;
(4)根据角平分线的定义和n边形的内角和公式,列式整理解答;
(1)∵DP、CP分别平分∠ADC和∠ACD,
∴∠PDC=∠ADC,∠PCD=∠ACD,
∴∠DPC=180°﹣∠PDC﹣∠PCD
=180°﹣∠ADC﹣∠ACD
=180°﹣(∠ADC+∠ACD)
=180°﹣(180°﹣∠A)
=90°+ ∠A,
∴如果∠A=90°,那么∠P=135°;如果∠A=x°,则∠P=(90+)°;
(2)∵DP、CP分别平分∠ADC和∠BCD,
∴∠PDC=∠ADC,∠PCD=∠BCD,
∴∠DPC=180°﹣∠PDC﹣∠PCD
=180°﹣∠ADC﹣∠BCD
=180°﹣(∠ADC+∠BCD)
=180°﹣(360°﹣∠A﹣∠B)
(3)五边形ABCDEF的内角和为:(5﹣2)180°=540°,
∵DP、CP分别平分∠EDC和∠BCD,
∴∠PDC=∠EDC,∠PCD=∠BCD,
∴∠P=180°﹣∠PDC﹣∠PCD
=180°﹣∠EDC﹣∠BCD
=180°﹣(∠EDC+∠BCD)
=180°﹣(540°﹣∠A﹣∠B﹣∠E)
=(∠A+∠B+∠E)﹣90°,
即∠P=(∠A+∠B+∠E)﹣90°;
(4)同(1)可得,∠P=(∠A3+∠A4+∠A5+…∠An)﹣(n﹣4)×90°.
故答案为:(1)如果∠A=90°,那么∠P=135°;如果∠A=x°,则∠P=(90+)°(2)∠P=180°﹣∠PDC﹣∠PCD=(∠A+∠B)(3)∠P=(∠A+∠B+∠E)﹣90°(4)∠P=(∠A3+∠A4+∠A5+…∠An)﹣(n﹣4)×90°
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
(Ⅰ)若AB=4,求 的长;
(Ⅱ)若 = ,AD=AP,求证:PD是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠BOC=60°,OF平分∠BOC.若AO⊥BO,OE平分∠AOC,则∠EOF的度数是( )
A. 45°
B. 15°
C. 30°或60°
D. 45°或15°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.
(1)求证:AF=BE;
(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+2x+m.
(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC和△DBC中,∠ACB=∠DBC=90°,点E是BC的中点,EF⊥AB,垂足为F,且AB=DE.
(1)求证:△BCD是等腰直角三角形;
(2)若BD=8厘米,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,图1表示的是某教育网站一周内连续7天日访问总量的情况,图2表示的是学生日访问量占访问总量的百分比情况,观察图1、图2,解答下列问题:
(1)若这7天的日访问总量一共约为10万人次,求星期三的日访问总量;
(2)求星期日学生日访问量.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com