精英家教网 > 初中数学 > 题目详情

【题目】如图,在每个小正方形的边长为1的网格中,为格点,为小正方形边的中点.

1的长等于_________

2)点分别为线段上的动点,当取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段,并简要说明点和点的位置是如何找到的(不要求证明).

【答案】15;(2)见解析

【解析】

1)直接利用勾股定理计算可得;

2)令BC与网格交于P,再分别取网格线中点GH,连接,与AC交于Q,从而可得.

解:(1)由图可得:

AC=

故答案为:5

2)如图,与网格线相交,得点;取格点,连接,与网格线相交,得点,取格点,连接,与网格线相交,得点,连接,与相交,得点.连接.线段即为所求.

如图,延长DP,交网格线于点T,连接ABGHDP交于点S

由计算可得:AB=BC=AC=5

∴△ABC为直角三角形,∠ABC=90°

tanACB=2

tanBCT=PTTC=2

∴∠ACB=BCT,即BC平分∠ACT

根据画图可知:GHBC

∴∠ACB=CQH,∠BCT=GHC

∵∠BCT=BCA

∴∠CQH=GHC

CQ=CH

由题意可得:BS=CH

BS=CQ

又∵BP=CP,∠PBS=PCQ

∴△BPS≌△CPQ

∴∠PSB=PHC=90°,即PQAC

PD+PQ的最小值即为PD+PT

∴所画图形符合要求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,CD⊙O上两点,且在直径AB两侧,连结CDAB于点EG上一点,∠ADC∠G

1)求证:∠1∠2

2)点C关于DG的对称点为F,连结CF,当点F落在直径AB上时,CF10tan∠1,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的面积为4,分别取ACBC两边的中点A1B1,记△A1B1C的面积为S1;再分别取A1CB1C的中点A2B2,记△A2B2C的面积为S2,再分别取A2CB2C的中点A3B3,记△A3B3C的面积为S3;则S3的值等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yx2mx+4y轴交于点C,过点Cx轴的平行线交抛物线于点B,点A在抛物线上,点B关于点A的对称点D恰好落在x轴负半轴上,过点Ax轴的平行线交抛物线于点E.若点AD的横坐标分别为1、﹣1,则线段AE与线段CB的长度和为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数yn为常数).

1)当n1时,

①点P(﹣3m)在此函数图象上,求m的值.

②当﹣4≤x≤3时,求此函数的最大值和最小值.

2)当xn时,若此函数的图象与坐标轴只有两个交点,求n的取值范围.

3)若n0,当此函数的图象与以A03)、B5,﹣2)、C(﹣5,﹣2)、D(﹣53)为顶点的四边形的边有且只有四个公共点时,直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线经过点和点.

(1)求抛物线的解析式;

(2)为抛物线上的一个动点,点关于原点的对称点为.当点落在该抛物线上时,求的值;

(3)是抛物线上一动点,连接,以为边作图示一侧的正方形,随着点的运动,正方形的大小与位置也随之改变,当顶点恰好落在轴上时,求对应的点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展了“创建文明校园”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:交通安全,D:卫生保洁”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.

1)本次随机调查的学生人数是 人;

2)请你补全条形统计图;

3)在扇形统计图中,“A”所在扇形的圆心角等于 度;

4)小明和小华各自随机参加其中的一个主题活动,请用画树状图或列表的方式,求他们恰好同时选中“文明礼仪”或“生态环境”主题的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应国家“垃圾分类进校园”的号召,某校准备购买新的分类垃圾箱进行更换,已知购买5A类垃圾箱和4B类垃圾箱需花费1600元,购买3A类垃圾箱的费用恰好等于购买4B类垃圾箱的费用.

1)求购买一个A类垃圾箱和一个B类垃圾箱各需多少元;

2)该校计划用不超过9000元的经费购买A类和B类垃圾箱共50个,其中A类垃圾箱的数量不低于25个,则本次可以选择的方案有几种;

3)在(2)的条件下哪种方案的费用最低,最低费用是多少元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线x轴交于点A,与y轴交点C,抛物线AC两点,与x轴交于另一点B

1)求抛物线的解析式.

2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当时,求的值.

3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以MNEB为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案