精英家教网 > 初中数学 > 题目详情

【题目】如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径CD为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).

(1)如图,建立直角坐标系,求此抛物线的解析式;
(2)如果竖直摆放7个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶至多多少个时,网球可以落入桶内?

【答案】
(1)

解:M(0,5),B(2,0),C(1,0),D( ,0),

设抛物线的解析式为y=ax2+k,

∵抛物线过点M和点B,

则k=5,

即抛物线解析式为


(2)

解:当x=1时,y= ;当x= 时,y=

即P(1, ),Q(

当竖直摆放7个圆柱形桶时,桶高= ×7=2.1.

∵2.1< 且2.1<

∴网球不能落入桶内;


(3)

解:设竖直摆放圆柱形桶m个时网球可以落入桶内,

由题意,得, ≤0.3m≤

解得: ≤m≤

∵m为整数,

∴m的值为8,9,10,11,12.

∴当竖直摆放圆柱形桶至多12个时,网球可以落入桶内.


【解析】(1)以抛物线的对称轴为y轴,水平地面为x轴,建立平面直角坐标系,设解析式,结合已知确定抛物线上点的坐标,代入解析式确定抛物线的解析式;(2)利用当x=1时,y= ;当x=1.5 时,y= .得出当竖直摆放5个圆柱形桶时,得出桶高进而比较;即可得出答案;(3)由圆桶的直径,求出圆桶两边缘纵坐标的值,确定m的范围,根据m为正整数,得出m的值,即可得到当网球可以落入桶内时,竖直摆放圆柱形桶个数.
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的盒子中装有2枚黑色的棋子和1枚白色的棋子,每枚棋子除了颜色外其余均相同.从盒中随机摸出一枚棋子,记下颜色后放回并搅匀,再从盒子中随机摸出一枚棋子,记下颜色,用画树状图(或列表)的方法,求两次摸出的棋子颜色不同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,∠BAC50°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEO的度数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论,其中正确结论是( )

A.b2<4ac
B.2a+b=0
C.a+b+c>0
D.若点B( ,y1)、C( ,y2)为函数图象上的两点,则y1<y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ADF△BCE中,∠A=∠B,点D、E、F、C在同﹣直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF。

(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写出命题书写形式,如:如果①、②,那么③)

(2)选择(1)中你写出的一个命题,说明它正确的理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c的图象如图所示,若点A(﹣1,y1)、B(﹣6,y2)是它图象上的两点,则y1与y2的大小关系是( )

A.y1<y2
B.y1=y2
C.y1>y2
D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图所示 AD、AE分别是△ABC的中线、高,且AB=5cm,AC=3cm,,△ABD△ACD的周长之差为_________,△ABD△ACD的面积关系为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角形的周长为38,第一条边长为a,第二条边比第一条边的2倍多3.

(1)表示第三条边;

(2)若三角形为等腰三角形,求a的值;

(3)若a为正整数,此三角形是否为直角三角形?说明理由.

查看答案和解析>>

同步练习册答案