精英家教网 > 初中数学 > 题目详情

【题目】一个不透明的盒子中装有2枚黑色的棋子和1枚白色的棋子,每枚棋子除了颜色外其余均相同.从盒中随机摸出一枚棋子,记下颜色后放回并搅匀,再从盒子中随机摸出一枚棋子,记下颜色,用画树状图(或列表)的方法,求两次摸出的棋子颜色不同的概率.

【答案】解:画树状图得:

∵共有9种等可能的结果,两次摸出的棋子颜色不同的有4种情况,
∴两次摸出的棋子颜色不同的概率为:
【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的棋子颜色不同的情况,再利用概率公式即可求得答案.
【考点精析】解答此题的关键在于理解列表法与树状图法的相关知识,掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面材料并解决有关问题:

我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x2|时,可令x+1=0x2=0,分别求得x=1x=2(称﹣12分别为|x+1||x2|的零点值).在实数范围内,零点值x=1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:

①x﹣1②﹣1≤x2③x≥2

从而化简代数式|x+1|+|x﹣2|可分以下3种情况:

x﹣1时,原式=﹣x+1x﹣2=﹣2x+1

当﹣1≤x2时,原式=x+1﹣x﹣2=3

x≥2时,原式=x+1+x2=2x1.综上讨论,原式=

通过以上阅读,请你解决以下问题:

1)化简代数式|x+2|+|x﹣4|

2)求|x﹣1|﹣4|x+1|的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是DCP的平分线上一点.若AMN=90°,求证:AM=MN.

下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.

证明:在边AB上截取AE=MC,连ME.正方形ABCD中,B=BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

(下面请你完成余下的证明过程)

(2)若将(1)中的正方形ABCD改为正三角形ABC(如图2),N是ACP的平分线上一点,则当AMN=60°时,结论AM=MN是否还成立?请说明理由.

(3)若将(1)中的正方形ABCD改为边形ABCD……X,请你作出猜想:当AMN= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:

(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);
(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润为1200元?
(3)若该超市每星期销售这种文具盒的销售量不少于115个,且单件利润不低于4元(x为整数),当每个文具盒定价多少元时,超市每星期利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC与△DCE都是等边三角形,BCE三点在同一条直线上,若AB=6,BAD=150°,则DE的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )

A. B. C. D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥ABE,FAC上,BD=DF;

证明:(1)CF=EB.

(2)AB=AF+2EB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径CD为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).

(1)如图,建立直角坐标系,求此抛物线的解析式;
(2)如果竖直摆放7个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶至多多少个时,网球可以落入桶内?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),且a2+ab+ac<0,下列说法:
①b2﹣4ac<0;
②ab+ac<0;
③方程ax2+bx+c=0有两个不同根x1、x2 , 且(x1﹣1)(1﹣x2)>0;
④二次函数的图象与坐标轴有三个不同交点,
其中正确的个数是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案