精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O交底边BCD.

(1)求证:BD=CD;

(2)若AB=3,cosABC=,在腰AC上取一点E使AE=,试判断DE与⊙O的位置关系,并证明.

【答案】(1)证明见解析;(2)DE与⊙O相切理由见解析;

【解析】

(1)连结AD,如图,根据圆周角角定理,由AB为直径得∠ADB=90°,然后根据等腰三角形的性质可得BD=CD;

(2)连结OD,如图,在RtABD中,先利用余弦定义计算出BD=AB=1,则Cd=1,再利用勾股定理计算出AD=2,则有,加上∠DAE=CAD,于是可判断ADE∽△ACD,所以∠AED=ADC=90°,接着证明ODABC的中位线得到ODAC,所以ODDE,则根据切线的判定定理可判断DE为⊙O的切线.

(1)证明:连结AD,如图,

AB为直径,

∴∠ADB=90°,

ADBC,

AB=AC,

BD=CD;

(2)解:DE与⊙O相切.理由如下:

连结OD,如图,

RtABD中,∵cosABD=,

BD=AB=×3=1,

AD=,CD=1,

而∠DAE=CAD,

∴△ADE∽△ACD,

∴∠AED=ADC=90°,

DEAC,

OA=OB,BD=CD,

OD为△ABC的中位线,

ODAC,

ODDE,

DE为⊙O的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,MN⊙O的直径,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,如果PA+PB的最小值为,那么⊙O的直径等于(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一副含角的三角板如图摆放,边重合,.当点从点出发沿方向滑动时,点同时从点出发沿轴正方向滑动.

设点关于的函数表达式为________.

连接.当点从点滑动到点时,的面积最大值为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点的直线与直线相交于点

1)直线的关系式为 ;直线的关系式为 (直接写出答案,不必写过程).

2)求的面积.

3)若有一动点沿路线运动,当时,求点 坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,的直角项点轴的正半轴上,顶点的纵坐标为,.是斜边上的一个动点,则的周长的最小值为___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点P是正方形ABCD内的一点,连PA、PB、PC.

(1)将PAB绕点B顺时针旋转90°PCB的位置(如图1).

设AB的长为a,PB的长为bb<a),求PAB旋转到PCB的过程中边PA所扫过区域(图1中阴影部分)的面积;

若PA=2,PB=4,APB=135°,求PC的长.

(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面积.

(2)若每种植1平方米草皮需要200元,问总共需投入多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.

(1)设a=2,点B(4,2)在函数y1、y2的图象上.

①分别求函数y1、y2的表达式;

②直接写出使y1>y2>0成立的x的范围;

(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,AA'B的面积为16,求k的值;

(3)设m=,如图②,过点AADx轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.

(1)如图1,点D在线段BC的延长线上移动,若∠BAC=30°,则∠DCE=   

(2)设∠BAC=α,∠DCE=β:

如图1,当点D在线段BC的延长线上移动时,αβ之间有什么数量关系?请说明理由;

当点D在直线BC上(不与B、C重合)移动时,αβ之间有什么数量关系?请直接写出你的结论.

查看答案和解析>>

同步练习册答案