精英家教网 > 初中数学 > 题目详情
13.10袋小麦,如果以40千克为准,超过的千克数记作正数,不足的千克数记做负数.称重的纪录如下:
+2,+1,-0.5,-1,-2,+3,-0.5,-1,-1,0
(1)这10袋小麦中,最轻是多少千克?最重是多少千克?直接回答
(2)这10袋小麦的总重量是多少千克?

分析 (1)根据有理数的大小比较,可得答案;
(2)根据有理数的加法,可得答案.

解答 解:(1)3>2>1>0>-0.5>-1>-2.
最轻的是40--2=38千克,
最重的是40+3=43千克,
(2)40×10+(2+1-0.5-1-2+3-0.5-1-1+0)
=400+0=400千克,
答:这10袋小麦的总重量是400千克.

点评 本题考查了正数和负数,利用有理数的运算是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.式子:5-12+8-10的意义是5、-12、8与-10的和.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.

(1)求证:△ABQ≌△CAP;
(2)当点P、Q分别在AB、BC边上运动时,∠QMC的大小变化吗?若变化,说明理由;若不变,请直接写出它的度数.
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同,求:
(1)m的值;
(2)代数式(m+2)(2m-$\frac{7}{5}$)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知y=y1+y2,其中y1与x成正比例,y2与x-2成正比例.当x=-1时,y=2;当x=3时,y=-2.求y与x的函数关系式,并画出该函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图所示,二次函数y=-x2+2x+3的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.
(1)B点坐标(-1,0),C点坐标(0,3),
(2)根据图象,写出函数值y为正数时,自变量x的取值范围是-1<x<3.
(3)在第一象限内该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某百货商场的某种商品预计在今年平均每月售出100千克,一月份比预计平均月销售量多10千克记为+10千克,以后每月销售量和其前一个月销售量比较,其变化如下表(前11个月):
月  份一月二月三月四月五月六月七月八月九月十月十一月
销售量变化情况/千克+10+5+1+2-4-4-10-12+5+4+5.8
(1)这11个月中销售量最多的是几月份?最少的是几月份?它们相差多少千克?
(2)前11个月总共销售量是多少?月平均销售量又是多少?
(3)要达到预计的月平均销售量,12月份还需销售多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知抛物线y=x2+bx+c经过A(-1,0)、B(3,0)两点,点C是抛物线与y轴的交点.
(1)求抛物线的解析式和顶点坐标;
(2)当0<x<3时,求y的取值范围;
(3)在抛物线的对称轴上是否存在点M,使△BCM是等腰三角形?若存在,求出点M坐标;若不存在说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.等腰三角形的顶角是120°,底边上的高是3,则腰长为6.

查看答案和解析>>

同步练习册答案