8£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬AB¡ÍxÖáÓÚµãB£¬AB=6£¬tan¡ÏAOB=$\frac{3}{4}$£¬½«¡÷OABÈÆ×ÅÔ­µãOÄæÊ±ÕëÐýת90¡ã£¬µÃµ½¡÷OA1B1£»ÔÙ½«¡÷OA1B1ÈÆ×ÅÏß¶ÎOB1µÄÖеãÐýת180¡ã£¬µÃµ½¡÷OA2B1£¬Å×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©¾­¹ýµãB¡¢B1¡¢A2£®
£¨1£©ÇóÅ×ÎïÏߵĹØÏµÊ½£®
£¨2£©ÔÚµÚÈýÏóÏÞÄÚ£¬Å×ÎïÏßÉϵĵãP£¨m£¬n£©£¬Çó¡÷PBB1µÄÃæ»ýÓëmµÄº¯Êý¹ØÏµÊ½£®
£¨3£©ÔÚµÚÈýÏóÏÞÄÚ£¬Å×ÎïÏßÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹µãQµ½Ïß¶ÎBB1µÄ¾àÀëΪ$\sqrt{2}$£¿Èô´æÔÚ£¬Çó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Ê×Ïȸù¾ÝÐýתµÄÐÔÖÊÈ·¶¨µãB¡¢B1¡¢A2ÈýµãµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊý·¨ÇóµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Çó¡÷PBB1Ãæ»ýµÄ·½·¨£¬Èçͼ1Ëùʾ£¬Çó³ö¡÷PBB1µÄÃæ»ý±í´ïʽ£¬S¡÷PBB1=S¡÷PBC+SËıßÐÎPCOB1-S¡÷OBB1£¬½ø¶øµÃ³ö´ð°¸£»
£¨3£©±¾ÎÊÒýÓÃÁË£¨2£©ÎÊÖÐÈý½ÇÐÎÃæ»ý±í´ïʽµÄ½áÂÛ£¬ÀûÓô˱í´ïʽ±íʾ³ö¡÷QBB1µÄÃæ»ý£¬È»ºó½âÒ»Ôª¶þ´Î·½³ÌÇóµÃQµãµÄ×ø±ê£®

½â´ð ½â£º£¨1£©¡ßAB¡ÍxÖᣬAB=6£¬tan¡ÏAOB=$\frac{3}{4}$£¬
¡àOB=8£¬
¡àB£¨-8£¬0£©£¬B1£¨0£¬-8£©£¬A2£¨6£¬0£©£®
¡ßÅ×ÎïÏßy=a£¨x+8£©£¨x-6£©£¨a¡Ù0£©¾­¹ýµãB1£¨0£¬-8£©£¬
¡à$a=\frac{1}{6}$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ£º$y=\frac{1}{6}{x^2}+\frac{1}{3}x-8$£®                

£¨2£©µãPÊǵÚÈýÏóÏÞÄÚÅ×ÎïÏß$y=\frac{1}{6}{x^2}+\frac{1}{3}x-8$ÉϵÄÒ»µã£¬
Èç´ðͼ1£¬¹ýµãP×÷PC¡ÍxÖáÓÚµãC£®
ÉèµãPµÄ×ø±êΪ£¨m£¬n£©£¬Ôòm£¼0£¬n£¼0£¬$n=\frac{1}{6}{m^2}+\frac{1}{3}m-8$£®
ÓÚÊÇPC=|n|=-n=$-\frac{1}{6}{m^2}-\frac{1}{3}m+8$£¬OC=|m|=-m£¬
BC=OB-OC=4+m£¬
S¡÷PBB1=S¡÷PBC+SËıßÐÎPCOB1-S¡÷OBB1=-$\frac{2}{3}$m2-$\frac{16}{3}$m£»

£¨3£©¼ÙÉèÔÚµÚÈýÏóÏÞµÄÅ×ÎïÏßÉÏ´æÔڵ㣬ʹµãQ£¨x1£¬y1£©µ½Ïß¶ÎBB1µÄ¾àÀëΪ$\sqrt{2}$£®
Èç´ðͼ2£¬¹ýµãQ×÷QD¡ÍBB1ÓÚµãD£®
ÓÉ£¨2£©¿ÉÖª£¬´Ëʱ¡÷QBB1µÄÃæ»ý¿ÉÒÔ±íʾΪ£º$-\frac{2}{3}{x_1}^2-\frac{16}{3}{x_1}$£¬
ÔÚRt¡÷QBB1ÖУ¬BB1=$\sqrt{O{B}^{2}+O{B}_{1}^{2}}$=$8\sqrt{2}$
¡ßS¡÷QBB1=$\frac{1}{2}¡ÁQD¡ÁB{B_1}$=$\frac{1}{2}¡Á8\sqrt{2}¡Á\sqrt{2}$=8£¬
¡à$-\frac{2}{3}{x_1}^2-\frac{16}{3}{x_1}=8$£¬
½âµÃ£ºx1=-2»òx1=-6
µ±x1=-2ʱ£¬y1=-8£»µ±x1=-6ʱ£¬y1=-4£¬
¡àQ£¨-2£¬-8£©»òQ£¨-6£¬-4£©£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨ÇóÅ×ÎïÏß½âÎöʽ¡¢¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢Ò»Ôª¶þ´Î·½³Ì¡¢ÐýתÓë×ø±ê±ä»¯¡¢Í¼ÐÎÃæ»ýÇ󷨡¢¹´¹É¶¨ÀíµÈÖØÒªÖªÊ¶µã£®µÚ£¨2£©ÎÊÆð³ÐÉÏÆôϵÄ×÷Óã¬ÊDZ¾ÌâµÄÄѵãÓëºËÐÄ£¬ÆäÖеÄÒªµãÊÇ×ø±êÆ½ÃæÄÚͼÐÎÃæ»ýµÄÇó½â·½·¨£¬ÕâÖÖ·½·¨ÊÇѹÖáÌâÖг£¼ûµÄÒ»ÖÖ½âÌâ·½·¨£¬Í¬Ñ§ÃÇÐèÒªÈÏÕæÕÆÎÕ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÈôaÓëb»¥ÎªÏà·´Êý£¬cÓëd»¥Îªµ¹Êý£¬»¯¼ò$\frac{a+b}{a+b+2}$+$\frac{cd}{cd+3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èôa3•£¨ax£©3=[£¨a2£©3]2£¬Ôòx=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÈçͼËùʾÊÇ9¸öÈ«µÈÈý½ÇÐΣ¬ÆäÖÐÓÐûÓо­¹ýÆ½ÒÆ¿ÉÒÔÓëÁíÒ»¸öÖØºÏµÄ£¿Èç¹ûÓУ¬°ÑËüÃÇÕÒ³öÀ´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÖ±Ïßl£ºy=2x+1ºÍÅ×ÎïÏßC1£ºy=a£¨x-t-2£©2+t2£¨a£¬tÊdz£Êý£¬a¡Ù0£¬t¡Ù0£©£¬Å×ÎïÏßC1ÓëxÖá½»ÓÚµãA£¨2£¬0£©
£¨1£©ÇóaµÄÖµ£»
£¨2£©Èôt£¾0£¬°ÑÅ×ÎïÏßC1Ïò×óÆ½ÒÆt¸öµ¥Î»ºóµÃÅ×ÎïÏßC2£¬ÈôÅ×ÎïÏßC2ÓëÖ±ÏßlÓÐΨһ¹«¹²µãM£¬ÇóÆ½ÒÆºóµÄÅ×ÎïÏßC2½âÎöʽ£»
£¨3£©ÈôµãNÊÇÅ×ÎïÏßC2µÄ¶¥µã£¬ÔÚÅ×ÎïÏßC2ÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹¡÷MNQÊÇÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®£¨-$\frac{1}{13}$£©-2µÄËãÊõƽ·½¸ùÊÇ13£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚµÈÑüÌÝÐÎABCDÖУ¬AB¡ÎCD£¬AB=4£¬CD=2£¬CH¡ÍABÓÚµãH£¬AE¡ÍBCÓÚµãE£¬CE£ºEB=1£º4£¬FÊÇCDÉÏÒ»µã£¬FG¡ÍCDÓÚµãG£®
£¨1£©ÇóCHµÄ³¤£»
£¨2£©Èç¹ûËıßÐÎCEGFµÄÃæ»ýÓë¡÷ABEµÄÃæ»ý±ÈΪ1£º4£¬ÇóCFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈçͼÊÇijÔµÄÔÂÀú£¬ºá×Å»òÊú×ÅÈ¡Á¬ÐøµÄÈý¸öÊý×Ö£¬ËüÃǵĺͿÉÄÜÊÇ£¨¡¡¡¡£©
A£®18B£®33C£®38D£®81

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èçͼ£¬ÒÑÖªµÈÑü¡÷ABCÖУ¬AB=AC£¬¡ÏBAC=120¡ã£¬AD¡ÍBCÓÚµãD£¬µãPÊÇBAÑÓ³¤ÏßÉÏÒ»µã£¬µãOÊÇÏß¶ÎADÉÏÒ»µã£¬OP=OC£¬ÏÂÃæµÄ½áÂÛ£º¢Ù¡ÏAPO+¡ÏDCO=30¡ã£»¢Ú¡÷OPCÊǵȱßÈý½ÇÐΣ»¢ÛAC=AO+AP£»¢ÜS¡÷ABC=SËıßÐÎAOCP£¬ÆäÖÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸