【题目】如图,四边形ABCD内接于⊙O,且对角线AC⊥BD,垂足为点E,过点C作CF⊥AB于点F,交BD于点G.
(1)如图①,连接EF,若EF平分∠AFG,求证:AE=GE;
(2)如图②,连接CO并延长交AB于点H,若CH为∠ACF的平分线,AD=3,且tan∠FBG=,求线段AH长
【答案】(1)见解析;(2)
【解析】
(1)过点E作EF的垂线交CF于点I,证△EFI是等腰直角三角形,进而可证△AEF≌△GEI,等量代换即可证明结论;
(2)连接DO并延长,交⊙O于点P,连接AP,先求出圆的半径,再过点H作HJ⊥AC于点J,过点O作OK⊥AC于点K,根据三角函数可设设AJ=3t,则HJ=4t,由勾股定理可知AH=5t,根据角平分线的性质定理及三角函数用含有t的代数式表示出HF=HJ=4t,AF=9t,CF=CJ=12t,AC=15t,CK=t,再根据平行线分线段成比例定理及勾股定理求解即可.
(1)如图,过点E作EF的垂线交CF于点I,
∵CF⊥AB,
∴∠AFG=90°,
∵EF平分∠AFG,
∴∠EFI=45°,
∵EF⊥EI,
∴∠EIF=45°,
∴EF=EI
又∵∠EGF+∠FAE=180°,∠EGF+∠EGI=180°,
∴∠EGI=∠FAE,
∵∠AEB=∠FEI=90°,
∴∠AEF=∠GEI,
∴△AEF≌△GEI(AAS),
∴AE=GE
(2)如图②,连接DO并延长,交⊙O于点P,连接AP,
则∠ABD=∠P,
∵DP为⊙O的直径,
∴∠PAD=90°,
∵tan∠FBG=,
∴tanP==,
又∵AD=3,
∴AP=4,PD=5,
∴OD=
∴OC=OD=
如图③,过点H作HJ⊥AC于点J,过点O作OK⊥AC于点K,
∵HJ⊥AC,BD⊥AC,
∴HJ∥BD,
∴∠ABD=∠AHJ,则tan∠AHJ=,
设AJ=3t,则HJ=4t,由勾股定理可知AH=5t,
∵CH是∠ACF的平分线,且HF⊥CF,HJ⊥AC,
∴HF=HJ=4t,
∴AF=AH+HF=9t,
设CF=x,则CJ=x,
∵∠BFG=∠GEC,∠FGB=∠EGC,
∴∠FBG=∠ECG,
∴tan∠FCJ===,
解得x=12t,
∴CF=CJ=12t,
∴AC=15t,
∴CK=t
又∵OK∥HJ,
∴=,
∴OK==t,
∴在Rt△OCK中,OK2+KC2=OC2,即(t)2+(t)2=()2,
解得t= (负值舍去),
∴AH=5t=
科目:初中数学 来源: 题型:
【题目】如图,O是等边内一点,,以点B为旋转中心,将线段BO逆时针旋转得到线段,连接,则下列结论:
①可以由绕点B逆时针旋转得到
②连接,则
③
④
其中正确的结论是____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.
涵涵的作业
解:x2﹣7x+10=0
a=1 b=﹣7 c=10
∵b2﹣4ac=9>0
∴x==
∴x1=5,x2=2
所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.
当腰为2,底为5时,等腰三角形的三条边为2,2,5.
探究应用:请解答以下问题:
已知等腰三角形ABC的两边是关于x的方程x2﹣mx+﹣=0的两个实数根.
(1)当m=2时,求△ABC的周长;
(2)当△ABC为等边三角形时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点是轴正半轴上的一动点,抛物线(是常数,且过点,与轴交于两点,点在点左侧,连接,以为边做等边三角形,点与点在直线两侧.
(1)求B、C的坐标;
(2)当轴时,求抛物线的函数表达式;
(3)①求动点所成的图像的函数表达式;
②连接,求的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠BAD=60°,AB=4,以点B为圆心,BD长为半径的扇形EBF与AD,CD交于点G,H,且G,H分别为AD,CD边上的中点,则阴影部分的面积为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点M是矩形ABCD的边AD的中点,点P是BC边上一动点,PE⊥MC,PF⊥BM,垂足为E、F.
(1)当矩形ABCD的长与宽满足什么条件时,四边形PEMF为矩形?猜想并证明你的结论.
(2)在(1)中,当点P运动到什么位置时,矩形PEMF变为正方形,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABE和△ACF中,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF.下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中,正确的是_________.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程一项地基基础加固处理工程由2、8两个工程公司承担建设,己知2工程公司单独建设完成此项工程需要180天工程公司单独施工天后,工程公司参与合作,两工程公司又共同施工天后完成了此项工程.
(1)求工程公司单独建设完成此项工程需要多少天?
(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,工程公司建设其中一部分用了天完成,工程公司建设另一部分用了天完成,其中,均为正整数,且,,求、两个工程公司各施工建设了多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C
(1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com