精英家教网 > 初中数学 > 题目详情
4.关于坐标系,下列说法正确的是(  )
A.建立坐标系,是为了定量地描述物体的位置及位置的变化
B.在建立坐标系时只需要确定正方向即可,与规定的正方向同向为正,与规定的正方向反向则为负
C.只能在水平方向建立直线坐标系
D.建立好直线坐标系后,可以用(x,y)表示物体的位置

分析 建立坐标系的意义是为了定量地描述物体的位置及位置的变化,要根据问题的实际需要,建立合适的坐标系.沿直线运动建立直线坐标系,在平面上运动建立平面直角坐标系.依此求解即可.

解答 解:建立坐标系,为了定量地描述物体的位置及位置的变化.
故选A.

点评 本题考查了点的坐标,掌握建立坐标系的目的以及方法是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.观察下列各式:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;

(1)根据上面各式的规律可得:(x-1)(xn+xn-1+…+x+1)=xn+1-1(其中n是正整数)
(2)运用以上规律:计算:1+2+22+23+…+210的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某地拟召开一场安全级别较高的会议,预估将有4000至7000名人员参加会议,为了确保会议的安全,会议组委会决定对每位入场人员进行安全检查,现了解到安检设备有门式安检仪和手持安检仪两种:门式安检仪每台3000元,需安检员2名,每分钟可通过10人;手持安检仪每只500元,需安检员1名,每分钟可通过2人,该会议中心共有6个不同的入口,每个入口都有5条通道可供使用,每条通道只可安放一台门式安检仪或一只手持安检仪,每位安检员的劳务费用均为200元.(安检总费用包括安检设备费用和安检员的劳务费用)
现知道会议当日人员从上午9:00开始入场,到上午9:30结束入场,6个入口都采用相同的安检方案,所有人员须提前到达并根据会议通知从相应入口进入
(1)如果每个入口处,只有2个通道安放门式安检仪,而其余3个通道均为手持安检仪,在这个安检方案下,请问:在规定时间内可通过多少名人员?安检所需要的总费用为多少元?
(2)请你设计一个安检方案,确保安检工作的正常进行,同时使得安检所需要的总费用尽可能少.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,正方形ABCD的边长为6,点E在边AB上,且AE=2BE,过点A作直线CE的垂线AF交CB的延长线于点G,连接BF,则BF的长为$\frac{6}{5}\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.九二班同学响应“每天锻炼一小时,幸福生活每一天”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑,跳绳,立定跳远,篮球定点定时投篮中任选一项进行训练,训练后进行了测试.现将项目选择人数机训练后篮球定时定点投篮球数进行整理,做出如下统计图表.
训练后篮球定点定时投篮进球数统计表
进球(个数)876543
人数214782
请你根据图表中的信息回答下列问题:
(1)训练后篮球定时定点投篮平均每个人的进球数为5个;
(2)选择长跑训练的人数占全班人数的百分比是10%,该班共有同学40人;
(3)根据测试数据,训练后篮球定时定点人均进球数比训练之前人均进球数增加25%,请求出训练之前的人均进球数;
(4)根据该统计数据,对于同学们课外活动时间参加体育锻炼有何看法或建议?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.求证:对任意两两不等的三个数a、b、c,都有$\frac{(a+b-c)^{2}}{(a-c)(b-c)}$+$\frac{(b+c-a)^{2}}{(b-a)(c-a)}$+$\frac{(c+a-b)^{2}}{(c-b)(a-b)}$是常数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图(1),正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM与BD相交于点F.
(1)求证:OE=OF;
(2)如图(2)若点E在AC的延长线上,AM⊥BE于点M,AM交DB的延长线于点F,其他条件不变,结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在△ABC中,∠BAC=90°,AB=AC,D为BC中点,且AE=CF.求证:△AED≌△CFD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:如图,△ABC中,∠ABC=45°,DH垂直平分BC交AB于点D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,试说明一下论断正确的理由:
(1)∠BDC=90°;
(2)BF=AC;
(3)CE=$\frac{1}{2}BF$.

查看答案和解析>>

同步练习册答案