【题目】如图,AB是⊙O的直径,弦CD⊥AB于点E,AM是△ACD外角∠DAF的平分线.
(1)求证:AM是⊙O的切线.
(2)若C是优弧ABD的中点,AD=4,射线CO与AM交于N点,求ON的长.
【答案】(1)证明见解析;(2)ON=.
【解析】
(1)根据垂径定理得到AB垂直平分CD,根据线段垂直平分线的性质得到AC=AD,得到∠BAD=∠CAD,由AM是△ACD的外角∠DAF的平分线,得到∠DAM=∠FAD,于是得到结论;
(2)证明△ACD是等边三角形,得到CD=AD=4,根据直角三角形的性质即可得到结论.
(1)证明:∵AB是⊙O的直径,弦CD⊥AB于点E,
∴AB垂直平分CD,
∴AC=AD,
∴∠BAD=∠CAD,
∵AM是△ACD的外角∠DAF的平分线,
∴∠DAM=∠FAD,
∴∠BAM=(∠CAD+∠FAD)=90°,
∴AB⊥AM,
∴AM是⊙O的切线;
(2)解:∵AC=AD,C是优弧ABD的中点,
∴AC=AD=CD,
∴△ACD是等边三角形,
∴CD=AD=4,
由(1)知AB垂直平分CD,则AB平分
∴CE=DE=2,
在中,设,则
根据勾股定理得,即
解得
∴OC=OA=,
∵∠ANO=∠OCE=30°,
∴ON=2OA=.
科目:初中数学 来源: 题型:
【题目】如图,BD是菱形ABCD的对角线,∠CBD=75°.
(1)求∠A的度数;
(2)请用尺规作图,在AD边上找到一点F,使得∠DBF=45°(不要求写作法,保留作图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形是矩形,四边形是正方形,点在轴的正半轴上,点在轴的正半轴上,点在上,点在反比例函数的图象上,,则正方形的面积为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数y=的图象的一支位于第一象限.
(1)判断该函数图象的另一支所在的象限,并求m的取值范围;
(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明、小丽两位同学八年级10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示:
(1)根据上图中提供的数据填写下表:
平均成绩(分) | 中位数(分) | 众数(分) | 方差(S2) | |
小明 | 80 | 80 | ||
小丽 | 85 | 260 |
(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是________;
(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:
(元) | 19 | 20 | 21 | 30 |
(件) | 62 | 60 | 58 | 40 |
(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).
(2)当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?
(3)根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC边中点.点M为线段BC上的一个动点(不与点C,点D重合),连接AM,将线段AM绕点M顺时针旋转90°,得到线段ME,连接EC.
(1)如图1,若点M在线段BD上.
① 依据题意补全图1;
② 求∠MCE的度数.
(2)如图2,若点M在线段CD上,请你补全图形后,直接用等式表示线段AC、CE、CM之间的数量关系 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com