分析 设直角三角形的两直角边是a和b,斜边是c,由勾股定理得出a2+b2=c2,然后求出以a、b为边长的两个正方形的面积之和是a2+b2=29,以斜边c为边长的正方形的面积是S=c2=a2+b2,代入求出即可.
解答 解:设直角三角形的两直角边是a和b,斜边是c,
由勾股定理得:a2+b2=c2,
则分别以a、b为边长的两个正方形的面积之和为:a2+b2=4+25=29,
以斜边c为边长的正方形的面积S=c2=a2+b2=29,$\sqrt{29}$是无理数.
故答案为:29,不是.
点评 本题考查了勾股定理和正方形的面积,解答本题的关键是根据勾股定理得出c2=a2+b2=29,难度适中.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ②③ | B. | ②④ | C. | 只有② | D. | ②④⑤ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com