【题目】如图,在中,,,,点D为AB的中点,点E为AC上一点,把沿DE折叠得到,连接.若,则的长为( )
A.B.C.4D.
科目:初中数学 来源: 题型:
【题目】定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是( )
A. 当m=﹣3时,函数图象的顶点坐标是(,)
B. 当m>0时,函数图象截x轴所得的线段长度大于
C. 当m≠0时,函数图象经过同一个点
D. 当m<0时,函数在x>时,y随x的增大而减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(-,y1),C(-,y2)为函数图象上的两点,则y1<y2.其中正确结论是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB=16,AC=20,点D与点A关于y轴对称,点E、F分别是线段AD、AC上的动点(点E不与点A、D重合),且∠CEF=∠ACB.
(1)直接写出BC的长是 ,点D的坐标是 ;
(2)证明:△AEF与△DCE相似;
(3)当△EFC为等腰三角形时,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】华为手机与苹果手机受消费者喜爱,某商户每周都用25000元购进250张华为手机壳和150张苹果手机壳.
(1)商户在第一周销售时,每张华为手机壳的售价比每张苹果手机壳的售价的2倍少10元,且两种手机壳在一周之内全部售完,总盈利为5000元,商户销售苹果手机壳的价格每张多少元?
(2)商户在第二周销售时,受到各种因素的影响,每张华为手机壳的售价比第一周每张华为手机壳的售价增加,但华为手机壳的销售量比第一周华为手机壳的销售量下降了a%;每张苹果手机壳的售价比第一周每张苹果手机壳的售价下降了a%,但苹果手机壳销售量与第一周苹果手机壳销售量相同,结果第二周的总销售额为30000元,求a()的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(﹣1,0)两点,与反比例函数与反比例函数y=的图象在第一象限内的交点为M(m,4).
(1)求一次函数和反比例函数的表达式;
(2)求△AOM的面积;
(3)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(3,4),B(5,0),连结AO,AB.点C是线段AO上的动点(不与A,O重合),连结BC,以BC为直径作⊙H,交x轴于点D,交AB于点E,连结CD,CE,过E作EF⊥x轴于F,交BC于G.
(1)AO的长为 ,AB的长为 (直接写出答案)
(2)求证:△ACE∽△BEF;
(3)若圆心H落在EF上,求BC的长;
(4)若△CEG是以CG为腰的等腰三角形,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度. 图2是支撑杆的平面示意图,AB和CD分别是两根不同长度的支撑杆,夹角∠BOD=. 若AO=85cm,BO=DO=65cm. 问: 当,较长支撑杆的端点离地面的高度约为_____.(参考数据:,.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com