【题目】如图,已知△ABC与△DEF分别是等边三角形和等腰直角三角形,AC与DF交于点G,AD与FC分别是△ABC和△DEF的高,线段BC,DE在同一条直线上,则下列说法不正确的是( )
A.△AGD∽△CGF
B.△AGD∽△DGC
C. =3
D. =
【答案】B
【解析】解:∵AD与FC分别是△ABC和△DEF的高,
∴AD⊥BC,FC⊥DE,
∴AD∥FC,
∴△AGD∽△CGF,所以A选项的说法正确;
∵△ABC与△DEF分别是等边三角形和等腰直角三角形,
∴∠DAC=30°,∠ACD=60°,∠FDC=45°,
∴∠ADG=45°,∠AGD=105°,
而∠DGC=75°,
∴△AGD与△DGC不相似,所以B选项的说法错误;
设CD=a,则AD= CD= a,CF=CD=a,
∵△AGD∽△CGF,
∴ =( )2=( )2=3,所以C选项的说法正确;
= = = ,所以D选项的说法正确.
故选B.
【考点精析】掌握等边三角形的性质和相似三角形的判定是解答本题的根本,需要知道等边三角形的三个角都相等并且每个角都是60°;相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS).
科目:初中数学 来源: 题型:
【题目】一批单价为20元的商品,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.
(1)求y与x满足的函数关系式(不要求写出x的取值范围);
(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).
(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标;
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠ABC=90°, D是直线AB上的点,AD=BC ,过点A作AF⊥AB,并截取AF=DB ,连接DC、DF、CF ,判断△CDF的形状并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1)(3x-2y)2-2x(3x-2y);
(2)(2a+1)(4a2-2a+1);
(3)先化简,再求值:
(-x-2y)(x-2y)-(2y-x)2+(2x3-4x2y)÷2x,其 中x=-3,.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠ACB=90°,AC=BC,CD为AB边上的中线,点E、F分别在AC、BC边上,且ED⊥DF.
(1)求证:△CDE≌△BDF;
(2)如图2,作EG⊥AB于G,FH⊥AB于H,求证:EG+FH=CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点E,则△DEF的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC(靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3 , 若AD=2,AB=2 ,∠A=60°,则S1+S2+S3的值为( )
A.
B.
C.
D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com