精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,△OAB的外接圆交y轴于点C,已知点A的坐标(12,0),点B的坐标(),过C点作圆的切线交x轴于点D,连接BC.
(1)求证:线段AB长度为12;
(2)求直线CD的解析式;
(3)设点E、F分别在边AB、AD上运动,且EF平分四边形ABCD的周长.试问,当线段AE等于多少时,△AEF的面积最大.

【答案】分析:(1)过点B作BM⊥OA于M,由点B、点A的坐标根据勾股定理就可以求出AB的长,从而求出结论.
(2)连接AC,作BN⊥OC于N,由圆周角的性质可以得出AC是直径,再由(1)的结论可以得出△AOC≌△ABC,而得出BC=OC,利用△ABM∽△CNB,可以求出BC,而求出C点的坐标,再根据切线的性质,由△AOC∽△COD,求出OD的值而求出D的坐标,最后由待定系数法就可以直接求出直线CD的解析式.
(3)作EH⊥OA于H,由勾股定理可以求出CD的值,可以求出四边形ABCD的周长,设AE=t,由条件可以表示出AF,由△AHE∽△AMB可以表示出EH,由三角形的面积公式表示出△AEF的面积,从而根据对称轴得出结论.
解答:解:(1)证明:过点B作BM⊥OA于M,
∴MB=,OM=
∵OA=12,
∴AM=12-=
∴AB==12;

(2)连接AC,作BN⊥OC于N,
∵∠AOC=90°,
∴AC是直径,
∴∠ABC=∠AOC=90°.
∵AB=AO=12,AC=AC,
∴△AOC≌△ABC,
∴BC=OC.
∵∠NBM=∠CBA=90°,
∴△AMB∽△CNB,


∴BC=5,
∴OC=5,
∴C(0,5).
∵CD切圆于点C,
∴∠DCA=90°=∠COD=∠COA,
∴∠CAO+∠ACO=∠ACO+∠DCO,
∴∠DCO=∠CAO,
∴△COD∽△CAO,


∴OD=
∴D(-,0).
设直线CD的解析式为:y=kx+b,则

解得:
∴直线CD的解析式为:y=+5;

(3)设AE=t,CD==
∴四边形ABCD的周长为:12+5+++12=36.5,
∴AF=18.25-t.
作EH⊥OA于H,
∴EH∥BM,
∴△AHE∽△AMB,


∴EH=t,
∴S△AEF==
∴当t=-=-=时,△AEF的面积最大.
点评:本题考查了切线的性质,待定系数法求一次函数的解析式,二次函数的最值,三角形的面积,相似三角形的判定与性质及勾股定理的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案