精英家教网 > 初中数学 > 题目详情
10.如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=3,BC=4,一动点P从点B出发,沿着B-A-D-C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的(  )
A.点CB.点FC.点DD.点O

分析 从图2中可看出当x=7时,此时△BPM的面积为0,说明点M一定在BD上,选项中有点O和D在BD上,此时x=3,y=3,所以点M的位置是图1中的点O.

解答 解:∵AB=3,BC=4,四边形ABCD是矩形,
∴当x=7时,点P到达D点,此时△BPM的面积为0,说明点M一定在BD上,
∵x=3,y=3,
∴从选项中可得只有O点符合,所以点M的位置是图1中的点O.
故选:D.

点评 本题主要考查了动点问题的函数图象,解题的关键是找出当x=7时,此时△BPM的面积为0,说明点M一定在BD上这一信息.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.⊙O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为(  )
A.$\sqrt{10}$B.2$\sqrt{3}$C.$\sqrt{13}$D.3$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源:2016-2017学年陕西省咸阳市七年级下学期第一次月考数学试卷(解析版) 题型:填空题

已知,那么=_______。

查看答案和解析>>

科目:初中数学 来源:2017届湖北省赤壁市九年级下学期第一次模拟(调研)考试数学试卷(解析版) 题型:解答题

阅读理【解析】
运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法. 如图1,在等腰△ABC中,AB=AC, AC边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h= h1+h2.

类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.

拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y =x+3,l2:y =-3x+3,若l2上一点M到l1的距离是1,试运用 “阅读理解”和“类比探究”中获得的结论,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.
(1)求OA、OB的长;
(2)若点E为x轴上的点,且S△AOE=$\frac{16}{3}$,求出点E的坐标;
(3)判断△AOE与△AOD是否相似?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图1,点E为矩形ABCD的边AD上一点,点P、点Q同时从点B出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系如图2(曲线OM为抛物线的一部分),则下列结论:
①AB=6cm;
②当0<t≤10时,y=$\frac{3}{10}$t2
③NH所在直线的解析式为y=-5t+90;
④sin∠PBQ=$\frac{1}{2}$时,t=13秒.
其中错误的结论个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知△ABC的三个顶点的坐标分别为A(-6,0)、B(-2,3)、C(-1,0).
(1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形;
(2)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润2000元.
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解分式方程:$\frac{12}{{x}^{2}-9}$+$\frac{2}{3-x}$=0.

查看答案和解析>>

同步练习册答案