【题目】已知四边形ABCD在直角坐标系中的位置如图所示,其中边AD和边BC都与x轴平行,边AB和边CD都与y轴平行,且D(2,3),点C的纵坐标是-1,反比例函数y=(k≠0)的图像过点C,与边AB交于点E.
(1)求直线OD的表达式和此反比例函数的解析式:
(2)如果点B到y轴的距离是4,求点E的坐标.
【答案】(1)y=x, ;(2)点E的坐标为(-4,)
【解析】
(1)设直线OD的解析式为y=mx,把D点坐标代入求出m的值即可;求出点C坐标为(2,-1),代入反比例函数y=(k≠0)中求出k的值即可;
(2)由点B的横坐标确定出点E的横坐标,代入反比例函数的解析式求出点E的纵坐标即可得到结论.
(1)设直线OD的表达式为y=mx,将点D(2,3)代入得,
2m=3,
m=,
∴直线OD的表达式为:y=x,
∵点D的坐标为(2,3),
∴点C的横坐标为2,
∴点C的坐标为(2,-1),
将点C(2,-1)代入反比例函数得,
,
k=-2,
∴反比例函数的解析式为:;
(2)∵点B到y轴的距离是4,
∴点B的横坐标为-4,
∴点E的横坐标为-4,
将x=-4代入得,
∴点E的坐标为(-4,)
科目:初中数学 来源: 题型:
【题目】如图所示,在中,内角与外角的平分线相交于点,,交于,交于,连接、,下列结论:①;②;③垂直平分;④.其中正确的是( )
A. ①②④B. ①③④C. ②③④D. ①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,联结BD与CE交于点F,BD交AE于点G.
(1)求证:△AEC≌△ADB ;
(2)若AB=2,∠ACB=67.5°,AC∥DF ,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O的半径为5,EF是长为8的弦,OG⊥EF于点G,点A在GO的延长线上,且AO=13.弦EF从图1的位置开始绕点O逆时针旋转,在旋转过程中始终保持OG⊥EF,如图2.
[发现]在旋转过程中,
(1)AG的最小值是 ,最大值是 .
(2)当EF∥AO时,旋转角α= .
[探究]若EF绕点O逆时针旋转120°,如图3,求AG的长.
[拓展]如图4,当AE切⊙O于点E,AG交EO于点C,GH⊥AE于H.
(1)求AE的长.
(2)此时EH= ,EC= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:≈1.414,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1, 在 中,,.点O是BC的中点,点D沿B→A→C方向从B运动到C.设点D经过的路径长为,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的 ( )
图1 图2
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac; ②b<0;③y随x的增大而减小; ④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是( )
A. ①②④ B. ①④ C. ①③④ D. ②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com