分析 (1)通过计算自变量为0时的函数值即可得到B点坐标,利用抛物线与x轴的交点问题,通过解方程-x2+4x-3=0可得到A点和C点坐标,然后根据三角形面积公式计算;
(2)先求出抛物线的对称轴方程,然后根据二次函数的性质求解.
解答 解:(1)当x=0时,y=-x2+4x-3=-3,则B点坐标为(0,-3),
当y=0时,-x2+4x-3=0,解得x1=1,x2=3,则A(1,0),C(3,0),
所以△ABC的面积=$\frac{1}{2}$×(3-1)×3=3;
(2)y=-x2+4x-3=-(x-2)2+1,
所以抛物线的对称轴为直线x=2,
由于抛物线开口向下,
所以当x>2时,y的值随x值的增大而减小.
点评 本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
科目:初中数学 来源: 题型:选择题
| A. | y=17(x+50)2+2016 | B. | y=17(x-50)2+2016 | C. | y=-17(x+50)2+2016 | D. | y=-17(x-50)2-2016 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com