6£®Èçͼ£¬ÒÑÖª¶þ´Îº¯Êýy=x2+bx+cµÄͼÏóÓëxÖá½»ÓÚA£¬BÁ½µã£¬ÓëyÖá½»ÓÚµãP£¬¶¥µãΪC£¨3£¬-16£©£®
£¨1£©Çó´Ëº¯ÊýµÄ¹ØÏµÊ½£»
£¨2£©×÷µãC¹ØÓÚxÖáµÄ¶Ô³ÆµãD£¬Ë³´ÎÁ¬½ÓA£¬C£¬B£¬D£®ÈôÔÚÅ×ÎïÏßÉÏ´æÔÚµãE£¬Ê¹Ö±ÏßPE½«ËıßÐÎABCD·Ö³ÉÃæ»ýÏàµÈµÄÁ½¸öËıßÐΣ¬ÇóµãEµÄ×ø±ê£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Ö±ÏßPE´óÓÚ¶þ´Îº¯Êýy=x2+bx+cµÄÖµ£¬xµÄȡֵ·¶Î§£»
£¨4£©FΪÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬¼Ç¡÷ABFµÄÃæ»ýΪS£¬µ±S=16£¬Çó³öÏàÓ¦µÄFµãµÄ×ø±ê£®

·ÖÎö £¨1£©Ö±½ÓÀûÓö¥µãʽÇó³ö¶þ´Îº¯Êý½âÎöʽ¼´¿É£»
£¨2£©ÀûÓÃÁâÐεÄÐÔÖʵóöÖ±ÏßPE±Ø¹ýÁâÐÎACBDµÄ¶Ô³ÆÖÐÐÄM£¬½ø¶øÇó³öÖ±ÏßPEµÄ½âÎöʽ£¬ÔÙÀûÓÃÁªÁ¢·½³Ì×éÇó³ö´ð°¸£»
£¨3£©ÀûÓã¨2£©ÖÐËùÇó½áºÏº¯ÊýͼÏóµÃ³ö´ð°¸£»
£¨4£©ÀûÓÃÒÑÖªµÃ³öFµã×Ý×ø±ê£¬½ø¶øÇó³öFµã×ø±ê£®

½â´ð ½â£º£¨1£©¡ß¶þ´Îº¯Êýy=x2+bx+cµÄ¶¥µãΪC£¨3£¬-16£©£¬
¡à¶þ´Îº¯Êý½âÎöʽΪ£ºy=£¨x-3£©2-16=x2-6x-7£»

£¨2£©Èçͼ1£¬ÉèÖ±ÏßPE¶ÔÓ¦µÄº¯Êý¹ØÏµÊ½Îª£ºy=kx+b£¬ÓÉÌâÒâ¿ÉµÃ£¬ËıßÐÎACBDÊÇÁâÐΣ¬
¹ýÖ±ÏßPE±Ø¹ýÁâÐÎACBDµÄ¶Ô³ÆÖÐÐÄM£¬
½«P£¨0£¬-7£©£¬M£¨3£¬0£©£¬´úÈëy=kx+bµÃ£º
$\left\{\begin{array}{l}{b=-7}\\{3k+b=\frac{7}{3}}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=\frac{7}{3}}\\{b=-7}\end{array}\right.$£¬
¹ÊÖ±ÏßPEµÄ½âÎöʽΪ£ºy=$\frac{7}{3}$x-7£¬
´Ó¶øÁªÁ¢·½³Ì×飺$\left\{\begin{array}{l}{y=\frac{7}{3}x-7}\\{y={x}^{2}-6x-7}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=\frac{25}{3}}\\{y=\frac{112}{9}}\end{array}\right.$£¬
¸ù¾ÝÌâÒâ¿ÉµÃ£ºµãE£¨$\frac{25}{3}$£¬$\frac{112}{9}$£©£»

£¨3£©¹Û²ìͼÏóµÃ£º0£¼x£¼$\frac{25}{3}$ʱֱÏßPE´óÓÚ¶þ´Îº¯Êýy=x2+bx+cµÄÖµ£»

£¨4£©Èçͼ2£¬¼ÙÉè´æÔÚÕâÑùµÄµãF£¬¿ÉÉèF£¨x£¬y£©£¬¹ýµãF×÷FG¡ÍxÖᣬ´¹×ãΪµãG£¬¸ù¾ÝÌâÒâAB=8£¬
¹ÊS=$\frac{1}{2}$¡Á|y|¡Á8=16£¬
½âµÃ£ºy=¡À4£¬
µ±y=4ʱ£¬x2-6x-7=4£¬
½âµÃ£ºx=3¡À2$\sqrt{5}$£¬
µ±y=-4ʱ£¬x2-6x-7=-4£¬
½âµÃ£ºx=3¡À2$\sqrt{3}$£»
¡àF1£¨3+2$\sqrt{5}$£¬4£©£¬F2£¨3-2$\sqrt{5}$£¬4£©£¬F3£¨3+2$\sqrt{3}$£¬-4£©£¬F4£¨3-2$\sqrt{3}$£¬-4£©£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶¥µãʽÇó¶þ´Îº¯Êý½âÎöʽÒÔ¼°º¯Êý½»µãÇ󷨺ÍÒ»Ôª¶þ´Î·½³ÌµÄ½â·¨µÈ֪ʶ£¬×¢ÒâÊýÐνáºÏµÄÓ¦Ó㬸ù¾ÝÌâÒâµÃ³öFµã×Ý×ø±êÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®µ±xµÄÖµ±ä´óʱ£¬´úÊýʽ-2x+3µÄÖµ£¨¡¡¡¡£©
A£®±äСB£®²»±äC£®±ä´óD£®ÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª¶þ´Îº¯Êýy=-x2+4x-3µÄͼÏóÓëyÖá½»ÓÚµãB£¬ÓëxÖá½»ÓÚA£¬CÁ½µã£®Çó£º
£¨1£©¡÷ABCµÄÃæ»ý£»
£¨2£©Ê¹yµÄÖµËæxÖµµÄÔö´ó¶ø¼õСµÄxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬EÊDZßABÉϵĵ㣬½«Ïß¶ÎBEÈÆBµã˳ʱÕëÐýתһ¶¨½Ç¶Èºó½»±ßCDÓÚµãF£¬´ËʱAE=CF£¬Á¬½ÓEF½»¶Ô½ÇÏßACÓÚµãO£¬ÇÒBE=BF£¬¡ÏBEF=2¡ÏBAC£¬FC=2£¬ÔòABµÄ³¤Îª£¨¡¡¡¡£©
A£®8$\sqrt{3}$B£®6C£®4$\sqrt{3}$D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬µãAÔڰ뾶Ϊ3µÄ¡ÑOÄÚ£¬OA=$\sqrt{3}$£¬PΪ¡ÑOÉÏÒ»µã£¬µ±¡ÏOPAÈ¡×î´óֵʱ£¬PAµÄ³¤µÈÓÚ$\sqrt{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÒÑÖªµãA£¨2£¬m£©£¬B£¨n£¬1£©ÔÚÅ×ÎïÏßy=x2µÄͼÏóÉÏ
£¨1£©Çóm¡¢nµÄÖµ£»
£¨2£©ÔÚyÖáÉÏÕÒÒ»µãP£¬Ê¹µÃPµ½A¡¢BÁ½µãµÄ¾àÀëÖ®ºÍ×î¶Ì£¬Çó³ö´ËʱPµã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬µãA£¬O£¬DÈýµãÔÚÒ»ÌõÖ±ÏßÉÏ£¬¡ÏAOB=20¡ã£¬¡ÏBOC=3¡ÏCOD£®
£¨1£©¡ÏCOD=40¡ã£»
£¨2£©ÈôÉäÏßOBÒÔÿÃë30¡ãµÄËÙ¶ÈÈÆµãO˳ʱÕëÐýת£¬ÉäÏßOCÒÔÿÃë10¡ãµÄËÙ¶ÈÈÆµãOÄæÊ±ÕëÐýת£¨ÉäÏßOB£¬OCÐýתµÄ½Ç¶È¶¼²»³¬¹ý180¡ã£©£®ÎÊÔ˶¯¶àÉÙÃëʱ£¬¡ÏBOC=40¡ã£¿
£¨3£©Èô¡ÏAOBÈÆµãO˳ʱÕëÐýת£¬Í¬Ê±¡ÏCODÈÆµãOÄæÊ±ÕëÐýת£¨¡ÏAOB£¬¡ÏCODÐýתµÄ½Ç¶È²»³¬¹ý180¡ã£©£®µ±¡ÏAOBÐýתµ½OB±ßÔÚ¡ÏCODÄÚ²¿£¬OA±ßÔÚ¡ÏCODÍⲿʱ£¬ÔÚ¡ÏAOBÄÚ×÷ÉäÏßOP£¬Ê¹¡ÏBOD-¡ÏAOP=3¡ÏPOC£¬Çó´Ëʱ¡ÏPOCµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Ò»µ×ÃæÊÇÕý·½ÐεÄÀâÖù¸ßΪ4cm£¬Õý·½Ðεı߳¤Îª2cm£¬Ôò´ËÀâÖù¹²ÓÐ12ÌõÀ⣬ËùÓÐÀâµÄ³¤¶ÈÖ®ºÍΪ32cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÏÂÁÐÉú»î¡¢Éú²úÏÖÏóÖУ¬ÆäÖпÉÓá°Á½µãÖ®¼ä£¬Ïß¶Î×î¶Ì¡±À´½âÊ͵ÄÏÖÏóÓТۢܣ®
¢ÙÓÃÁ½¿Å¶¤×ӾͿÉÒÔ°ÑľÌõ¹Ì¶¨ÔÚǽÉÏ£»
¢ÚÖ²Ê÷ʱ£¬Ö»ÒªÔÔÏÂÁ½¿ÃÊ÷£¬¾Í¿ÉÒÔ°ÑͬһÐÐÊ÷ÔÔÔÚͬһֱÏßÉÏ£»
¢Û´ÓAµ½B¼ÜÉèµçÏߣ¬×ÜÊǾ¡¿ÉÄÜÑØÏß¶ÎAB¼ÜÉ裻
¢Ü°ÑÍäÇúµÄ¹«Â·¸ÄÖ±£¬¾ÍÄÜËõ¶Ì·³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸