精英家教网 > 初中数学 > 题目详情
14.如图,在矩形ABCD中,E是边AB上的点,将线段BE绕B点顺时针旋转一定角度后交边CD于点F,此时AE=CF,连接EF交对角线AC于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为(  )
A.8$\sqrt{3}$B.6C.4$\sqrt{3}$D.8

分析 连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.

解答 解:如图,连接OB,
∵BE=BF,OE=OF,
∴BO⊥EF,
∴在Rt△BEO中,∠BEF+∠ABO=90°,
由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,
∴∠BAC=∠ABO,
又∵∠BEF=2∠BAC,
即2∠BAC+∠BAC=90°,
解得∠BAC=30°,
∴∠FCA=30°,
∴∠FBC=30°,
∵FC=2,
∴BC=2$\sqrt{3}$,
∴AC=2BC=4$\sqrt{3}$,
∴AB=$\sqrt{A{C}^{2}-B{C}^{2}}$=6.
故选:B.

点评 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,作辅助线并求出∠BAC=30°是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.如图,在Rt△ABC中,∠C=90°,∠B=30°,点P是AC的中点,过点P的直线L截下的三角形与△ABC相似,这样的直线L的条数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列哪一个函数,其图形与x轴有两个交点(  )
A.y=17(x+50)2+2016B.y=17(x-50)2+2016C.y=-17(x+50)2+2016D.y=-17(x-50)2-2016

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.
(1)当n=1时,如果a=-1,试求b的值;
(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式; 
(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.试求当n=3时a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,正△ABC的边长是4,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当2$\sqrt{2}$≤r≤4时,S的取值范围是2π-4≤x≤$\frac{16}{3}$π-4$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.已知二次三项式x2-4x+m有一个因式是x+3,求另一个因式以及m的值时,可以设另一个因式为x+n,则x2-4x+m=(x+3)(x+n).
即x2-4x+m=x2+(n+3)x+3n.
∴$\left\{\begin{array}{l}{n+3=-4}\\{m=3n}\end{array}\right.$解得,n=-7,m=-21,
∴另一个因式为x-7,m的值为-21.
类似地,二次三项式2x2+3x-k有一个因式是2x-5,则它的另一个因式以及k的值为(  )
A.x-1,5B.x+4,20C.x$+\frac{3}{2}$,$\frac{15}{2}$D.x+4,-4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(3,-16).
(1)求此函数的关系式;
(2)作点C关于x轴的对称点D,顺次连接A,C,B,D.若在抛物线上存在点E,使直线PE将四边形ABCD分成面积相等的两个四边形,求点E的坐标;
(3)在(2)的条件下,直线PE大于二次函数y=x2+bx+c的值,x的取值范围;
(4)F为抛物线上的一个动点,记△ABF的面积为S,当S=16,求出相应的F点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知抛物线C1:y=ax2+4ax+4a-5的顶点为D,与x轴相交于A、B两点(点A在点B的左边),且AB=6.
(1)求抛物线C1的解析式及顶点D的坐标;
(2)将直线y=-$\frac{1}{3}$x沿y轴向下平移m个单位(m>0),若平移后的直线与抛物线C1相交于点M、N(点M在点N的左边),且MN=$\sqrt{10}$,求m的值;
(3)点P是x轴正半轴上一点,将抛物线C1绕点P旋转180°后得到抛物线C2,抛物线C2的顶点为C,与x轴相交于E、F两点(点E在F的左边),当以点D、C、F为顶点的三角形是直角三角形时,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.将三张大小相同的正方形纸片摆放如图所示位置,那∠1的度数为57°.

查看答案和解析>>

同步练习册答案