如图,在直角坐标系中,已知点A(
,0)、B(
,3),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2014的直角顶点的坐标为 。
![]()
科目:初中数学 来源: 题型:
如图, 在Rt△ABC中,∠C=90º, AC=9,BC=12,动点P
从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从
点C开始沿边CB向点B以每秒2个单位长
度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ. 点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t
≥0).
![]()
![]()
(1)直接用含t的代数式分别表示:QB=__________, PD=___________;
(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由;
(3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻成为菱形,求点Q的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
【探究展示】
(1)证明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请
说明理由.
【拓展延伸】
(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是中心对称图形的概率为【 】
![]()
A.
B.
C.
D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )
A、向右平移了3个单位 B、向左平移了3个单位
C、向上平移了3个单位 D、向下平移了3个单位
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com