【题目】如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E,连接AG.
(1)求证:AG=CG;
(2)求证:AG2=GE·GF.
【答案】(1)证明见解析 (2)证明见解析
【解析】试题分析:
(1)由菱形的性质易证△ADG≌△CDG,从而可得AG=CG;
(2)由△ADG≌△CDG可得∠EAG=∠DCG,再由AB∥CD可得∠F=∠DCG,从而可得∠F=∠EAG,再利用∠AGE是公共角可证△AGE∽△FGA就可得到,所以
试题解析:
(1)∵四边形ABCD是菱形,
∴AD=CD,∠ADB=∠CDB,
在△ADG与△CDG中, ,
∴△ADG≌△CDG,
∴AG=CG.
(2) ∵在菱形ABCD中,AB∥CD,
∴∠F=∠GCD.
∵△ADG≌△CDG,
∴∠EAG=∠DCG,
∴∠EAG=∠F.
又∵∠AGE=∠FGA,
∴△AGE∽△FGA,
∴,
∴AG2=GE·GF.
科目:初中数学 来源: 题型:
【题目】下列调查中,最适合采用抽样调查的是( )
A. 乘客上飞机前对所有乘客的安全检查B. 了解一批炮弹的杀伤半径
C. 为了运载火箭能成功发射,对其所有的零部件的检查D. 了解七年一班同学某天上网的时间
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个几何体的形状为直三棱柱,右图是它的主视图和左视图.
(1)请补画出它的俯视图,并标出相关数据;
(2)根据图中所标的尺寸(单位:厘米),计算这个几何体的全面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),D为⊙C在第一象限内的一点,且∠ODB=60°.
(1)求⊙C的半径;
(2)求圆心C的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com