【题目】(2016吉林省)如图,在等腰直角三角形ABC中,∠BAC=90°,AC=cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)
(1)当点M落在AB上时,x= ;
(2)当点M落在AD上时,x= ;
(3)求y关于x的函数解析式,并写出自变量x的取值范围.
【答案】(1)4;(2);(3).
【解析】试题分析:(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,由此即可解决问题.
(2)如图1中,当点M落在AD上时,作PE⊥QC于E,先证明DQ=QE=EC,由PE∥AD,得=,由此即可解决问题.
(3)分三种情形①当0<x≤4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为△PEF,②当4<x≤时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ.③当<x<8时,如图4中,则重合部分为△PMQ,分别计算即可解决问题.
试题解析:解:(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,AP=CP=,所以x==4.故答案为:4.
(2)如图1中,当点M落在AD上时,作PE⊥QC于E.
∵△MQP,△PQE,△PEC都是等腰直角三角形,MQ=PQ=PC,∴DQ=QE=EC,∵PE∥AD,∴=,∵AC=,∴PA=,∴x=÷=.故答案为:.
(3)①当0<x≤4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为△PEF,
∵AP=x,∴EF=PE=x,∴y=S△PEF=PEEF=.
②当4<x≤时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ.
∵PQ=PC=,∴PM=16﹣2x,∴ME=PM﹣PE=16﹣3x,∴y=S△PMQ﹣S△MEG==.
③当<x<8时,如图4中,则重合部分为△PMQ,∴y=S△PMQ===.
综上所述.
科目:初中数学 来源: 题型:
【题目】图①②③是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.
(1)图①中△MON的面积=________;
(2)在图②③中以格点为顶点画出一个正方形ABCD,使正方形ABCD的面积等于(1)中△MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD的面积没有剩余(在图②、图③中画出的图形不能是全等形)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线与双曲线交于、两点,与轴交于点,与轴交于点,已知点、点.
(1)求直线和双曲线的解析式;
(2)将沿直线翻折,点落在第一象限内的点处,直接写出点的坐标;
(3)如图2,过点作直线交轴的负半轴于点,连接交轴于点,且的面积与的面积相等.
①求直线的解析式;
②在直线上是否存在点,使得?若存在,请直接写出所有符合条件的点的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某镇为响应中央关于建设社会主义新农村的号召,决定公路相距25km的A,B两站之间E点修建一个土特产加工基地,如图,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要使C、D两村到E点的距离相等,那么基地E应建在离A站多少km的地方?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有个填写运算符号的游戏:在“”中的每个□内,填入中的某一个(可重复使用),然后计算结果.
(1)计算:;
(2)若请推算□内的符号;
(3)在“”的□内填入符号后,使计算所得数最小,直接写出这个最小数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=_______,△APE的面积等于8.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知多项式x3﹣3xy2﹣3的常数项是a,次数是b.则a= ,b= ;
并将这两数在如图所示数轴上所对应的点A、B表示出来;
操作探究:
操作一:
(1)折叠纸面,使A表示的点与B表示的点重合,则5表示的点与__ ___表示的点重合;
操作二: (2)折叠纸面,使1表示的点与3表示的点重合,回答以下问题:
①表示的点与数_____表示的点重合;
②若数轴上C、D两点之间距离为9,(C在D的左侧),且C、D两点经折叠后重合,求C、D两点表示的数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定(a,b)※(c,d)=bc-ad
例如:(1,2)※(3,4)=2×3-1×4=2
根据上述规定解决下列问题:
(1)有理数对(4,-3)※(3,-2)=_______
(2)若有理数对(-3,2x-1)※(1,x+1)=7,则x=______
(3)当满足等式(-3,2x-1)※(k,x+k)=5+2k的x是非零整数时,求整数k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,C都在直线l上,AE⊥AB且AE=AB,BC⊥CD且BC=CD,三点E,B,D到直线l的距离分别是6,3,4,计算图中由线段AB,BC,CD,DE,EA所围成的图形的面积是( )
A. 50 B. 62 C. 65 D. 68
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com