精英家教网 > 初中数学 > 题目详情

如图所示,已知△ABC为等腰直角三角形,且EC⊥AC于C,AE=BF,试判断AE和BF的位置关系并说明理由.

解:AE⊥BF.
理由如下:∵△ABC为等腰直角三角形,
∴AB=AC,
又EC⊥AC于C,
∴在Rt△ABF与Rt△CAE中,

∴△ABF≌△CAE(HL),
∴∠ABF=∠EAC,
∵∠EAC+∠BAD=90°,
∴∠ABF+∠BAD=90°,
∴∠ADB=180°-(∠ABF+∠BAD)=180°-90°=90°.
∴AE⊥BF.
分析:先利用HL定理证明△ABF与△CAE全等,根据全等三角形对应角相等可以得到∠ABF=∠EAC,然后利用角度的转换即可得到∠ADB=90°,从而判断出AE和BF的位置关系是垂直.
点评:本题考查了全等三角形的判定与性质,等腰直角三角形的性质,证明直角三角形全等除一般的三角形的全等判定方法外,还有特殊的“HL”判定方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系.要求:(1)、(2)直接写出结论,(3)、(4)写出结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB为圆O的直径,AC为弦,OD∥BC交AC于D,OD=2cm,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB=AC,BD⊥AC,试说明∠BAC=2∠CBD.

查看答案和解析>>

同步练习册答案