精英家教网 > 初中数学 > 题目详情

【题目】直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.

(1)如图1,已知AEBE分别是∠BAO和∠ABO角的平分线,点AB在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小;

(2)如图2,已知AB不平行CDADBC分别是∠BAP和∠ABM的角平分线,又DECE分别是∠ADC和∠BCD的角平分线,点AB在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;

(3)如图3,延长BAG,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于EF,在△AEF中,如果有一个角是另一个角的4倍,试求∠ABO的度数.

【答案】(1)∠AEB的大小不变(2)∠CED的大小不变(3)∠ABO为45°或36°

【解析】分析:(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO角的平分线得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形内角和定理即可得出结论;(2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分别是∠BAP和∠ABM的角平分线,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形内角和定理可知∠F=45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;(3))由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的4倍分四种情况进行分类讨论.

本题解析:

(1)∠AEB的大小不变,

∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,

∴∠OAB+∠OBA=90°,

∵AE、BE分别是∠BAO和∠ABO角的平分线,

∴∠BAE=∠OAB,∠ABE=∠ABO,

∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;

(2)∠CED的大小不变.

延长AD、BC交于点F.

∵直线MN与直线PQ垂直相交于O,

∴∠AOB=90°,∴∠OAB+∠OBA=90°,

∴∠PAB+∠MBA=270°,

∵AD、BC分别是∠BAP和∠ABM的角平分线,

∴∠BAD=∠BAP,∠ABC=∠ABM,

∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,

∴∠F=45°,

∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,

∵DE、CE分别是∠ADC和∠BCD的角平分线,

∴∠CDE+∠DCE=112.5°,

∴∠E=67.5°; (其它方法酌情给分)

(3)∵∠BAO与∠BOQ的角平分线相交于E,

∴∠EAO=∠BAO,∠EOQ=∠BOQ,

∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,

∵AE、AF分别是∠BAO和∠OAG的角平分线,

∴∠EAF=90°.

在△AEF中,∵有一个角是另一个角的4倍,故有:

①∠EAF=4∠E,∠E=22.5°,∠ABO=45°;

②∠EAF=4∠F,∠E=67.5°,∠ABO=135°(不合题意,舍去);

③∠F=4∠E,∠E=18°,∠ABO=36°;

④∠E=3∠F,∠E=72°,∠ABO=144°(不合题意,舍去).

∴∠ABO为45°或36°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.

(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称            

(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你直接写出所有以格点为顶点,OA、OB为勾股边且有对角线相等的勾股四边形OAMB的顶点M的坐标.

(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD、DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.

(4)若将图2中△ABC绕顶点B按顺时针方向旋转a度(0°<a<90°),得到△DBE,连接AD、DC,则∠DCB=      °,四边形ABCD是勾股四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题同旁内角互补,两直线平行;全等三角形的周长相等;直角都相等;等边对等角。它们的逆命题是真命题的个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程(m﹣1x2+x+m2﹣1=0有一根为0,则m=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算(3a2b32÷a3b4的结果是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于________,如果沿一条直线对折后,它们能够____,那么这两个图形成轴对称,这条直线是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线ABM方向匀速运动,到M时停止运动,速度为1cm/s设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图像可以是( )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从甲、乙、丙3名同学中随机选调学生做环保志愿者,求下列事件的概率:

(1)选调1名,恰好是甲;

(2)选调2名,甲在其中.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=2x2+bx﹣1.

(1)求证:无论b取什么值,二次函数y=2x2+bx﹣1图象与x轴必有两个交点.

(2)若两点P(﹣3,m)和Q(1,m)在该函数图象上.

①求b、m的值;

②将二次函数图象向上平移多少单位长度后,得到的函数图象与x轴只有一个公共点?

查看答案和解析>>

同步练习册答案