精英家教网 > 初中数学 > 题目详情

已知:正方形ABCD的边长为1,正方形EFGH内接于ABCD,AE=a,AF=b,且SEFGH=数学公式,则|b-a|=________.


分析:由四边形ABCD与四边形EFGH是正方形,易证得∠DEH=∠AFE,然后由AAS证得△AEF≌△DHE,根据全等三角形的对应边相等可得AF=DE,所以a+b=1,根据a+b=1,且a2+b2=的等量关系求解,即可求得答案.
解答:∵四边形ABCD与四边形EFGH是正方形,
∴∠A=∠D=∠FEH=90°,EF=EH,
∴∠AEF+∠DEH=90°,∠AEF+∠AFE=90°,
∴∠DEH=∠AFE,
在△AEF和△DHE中,

∴△AEF≌△DHE,
∴AF=DE=b,
∵DE+AE=1,
∴a+b=1①,
∵SEFGH=EF2=AE2+AF2=
即:a2+b2=②,
∴ab=[(a+b)2-(a2+b2)]=
∴|b-a|==
故答案为:
点评:本题考查了全等三角形的判定与性质,正方形的性质以及完全平方公式的应用.解题的关键是证明△AEF≌△DHE,并找到条件a+b=1,然后利用完全平方公式的知识求得答案,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

22、(1)如图,已知在正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM且交∠CBE的平分线于N.试判定线段MD与MN的大小关系;
(2)若将上述条件中的“M是AB的中点”改为“M是AB上或AB延长线上任意一点”,其余条件不变.试问(1)中的结论还成立吗?如果成立,请证明;如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:正方形ABCD边长为4cm,E,F分别为CD,BC的中点,动点P在线段AB上从B?A以2cm/精英家教网s的速度运动,同时动点Q在线段FC上从F?C以1cm/s的速度运动,动点G在PC上,且∠EGC=∠EQC,连接PD.设运动时间为t秒.
(1)求证:△CQE∽△APD;
(2)问:在运动过程中CG•CP的值是否发生改变?如果不变,请求这个值;若改变,请说明理由;
(3)当t为何值时,△CGE为等腰三角形并求出此时△CGE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,已知在正方形ABCD中,P是BC上的一点,且AP=DP.求证:P是BC中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
6
.下列结论:
①△APD≌△AEB﹔②点B到直线AE的距离为
3
﹔③EB⊥ED﹔④S△APD+S△APB=0.5+
2

其中正确结论的序号是(  )

查看答案和解析>>

同步练习册答案