【题目】如图,△ABC中,AB=AC,AB是⊙O的直径,BC与⊙O交于点D,点E在AC上,且∠ADE=∠B.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为5,CE=2,求△ABC的面积.
【答案】(1)见解析;(2)S△ABC =40.
【解析】
(1)连接OD,证明OD⊥DE即可.因为AB是⊙O的直径,所以∠ADB=90°,因此∠B+∠BAD=90°.因为AO=DO,所以∠BAD=∠ADO.因为∠ADE=∠B,所以∠ADO+∠ADE=90°,即∠ODE=90°.可证DE是⊙O的切线;
(2)由AB=AC,∠ADB=90°可得点D是BC的中点,所以△ABC的面积是△ADC面积的2倍.因为点O是AB的中点,点D是BC的中点,可得AC=2DO=10,∠AED=180°-∠ODE=90°.因为CE=2,所以AE=8,根据射影定理DE2=AECE,所以DE=4,所以S△ABC=2S△ADC=2×(×ACDE)=40.
(1)连接OD,
∵AB是⊙O的直径
∴∠ADB=90°,
∴∠B+∠BAD=90°,
∵AO=DO,
∴∠BAD=∠ADO,
∵∠ADE=∠B,
∴∠ADO+∠ADE=∠BAD+∠B=90°,
即∠ODE=90°,
∴OD⊥DE,
∵OD是⊙O的半径,
∴DE是⊙O的切线;
(2)由(1)知,∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD是△ABC的中线,
∴点D是BC的中点,
又∵OB=OA,
∴DO是△ABC的中位线,
∵⊙O的半径为5,
∴AC=2DO=10,
∵CE=2,
∴AE=AC-CE=8,
∵DO是△ABC的中位线,
∴DO∥AC,
∴∠EDO+∠AED=180°,
∴∠AED=90°,
∴∠AED=∠DEC=90°,
∴∠EDC+∠C=90°,
∵ADC=180°-∠ADB=90°,
∴∠ADE+∠EDC=90°,
∴∠ADE=∠C,
∵∠AED=∠DEC,∠ADE=∠C,
∴△AED~△DEC,
∴即,
∴DE=4,
∴S△ADC=ACDE=20,
∵AD是△ABC的中线,
∴S△ABC=2S△ADC=40.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线经过,,三点.
求抛物线的解析式;
若点M为第三象限内抛物线上一动点,点M的横坐标为m,的面积为S.求S关于m的函数关系式,并求出S的最大值.
若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-3,3),B(-2,1),C(1,2).
(1)把△ABC绕原点O旋转,使点C与点C1(2,-1)重合,画出旋转后的△A1B1C1,并写出点A1,B1的坐标;
(2)在(1)的条件下,若△ABC是按顺时针方向旋转的,求点A到点A1经过的路径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图已知AB为⊙O的直径,CD切⊙O于C点,弦CF⊥AB于E点,连结AC.
(1)探索AC满足什么条件时,有AD⊥CD,并加以证明.
(2)当AD⊥CD,OA=5cm,CD=4cm,求△OCF面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△CEF均为等腰直角三角形,E在△ABC内,∠CAE+∠CBE=90°,连接BF.
(1)求证:△CAE∽△CBF
(2)若BE=1,AE=2,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表
测试序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成绩(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.
(1)求证:BE=CE;
(2)若AB=6,求弧DE的长;
(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前.如图的程序框图的算法思路就是来源于“欧几里得得法”.执行该程序框图(图中aMODb表示a除以b的余数,a=b表示将b的值赋与a)若输入的a,b分别为675,125,则输出的( )
A. 0B. 25C. 50D. 75
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+与直线y=x+b交于A、B两点,其中点A在x轴上,点P是直线AB上方的抛物线上一动点(不与点A、B重合)过P作y轴的平行线交直线于点C,连接PA、PB.
(1)求直线的解析式及A、B点的坐标;
(2)当△APB面积最大时,求点P的坐标以及最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com