【题目】如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-3,3),B(-2,1),C(1,2).
(1)把△ABC绕原点O旋转,使点C与点C1(2,-1)重合,画出旋转后的△A1B1C1,并写出点A1,B1的坐标;
(2)在(1)的条件下,若△ABC是按顺时针方向旋转的,求点A到点A1经过的路径的长.
科目:初中数学 来源: 题型:
【题目】下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:
(1)画一个直角边长为4,面积为6的直角三角形.
(2)画一个底边长为4,面积为8的等腰三角形.
(3)画一个面积为5的等腰直角三角形.
(4)画一个边长为2,面积为6的等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)经过A(3,0),B(﹣5,0),C(0,﹣5)三点,O为坐标原点.
(1)求此抛物线的解析式;
(2)把抛物线y=ax2+bx+c(a≠0)向上平移个单位长度,再向左平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;
(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,它是一个8×10的网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.
(1)画出△ABC关于直线OM对称的△A1B1C1.
(2)画出△ABC关于点O的中心对称图形△A2B2C2.
(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形吗?如果是,请画出对称轴.△A1B1C1与△A2B2C2组成的图形 (填“是”或“不是”)轴对称图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,则下面说法正确的是( )
A. 1一定不是方程x2+bx+a=0的根B. 0一定不是方程x2+bx+a=0的根
C. ﹣1可能是方程x2+bx+a=0的根D. 1和﹣1都是方程x2+bx+a=0的根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为4的等边三角形OAB放置于平面直角坐标系xOy中,反比例函数y=(x<0)的图象与AB边交于点C,与BO边交于点D,若CD⊥BO,则k的值为( )
A. -B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2-4ax+4a+3(a<0)的顶点为D,它的对称轴与x轴交点为M.
(1)求点D、点M的坐标;
(2)如果该抛物线与y轴的交点为A,点P在抛物线上,且有MA∥DP,DP=AM,求该抛物线解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,AB是⊙O的直径,BC与⊙O交于点D,点E在AC上,且∠ADE=∠B.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为5,CE=2,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与坐标轴分别交于点 ,点P是线段AB上方抛物线上的一个动点。
(1)当点P运动到什么位置时,的面积有最大值?
(2)过点P作轴的垂线,交线段AB于点D,再过点P作交抛物线于点E,连接DE,请问是否存在点P使为等腰直角三角形?若存在,直接写出点P的坐标;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com