精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABE中,∠A=105°,AE的垂直平分线MNBE于点C,且AB+BC=BE,则∠B的度数是(  )

A. 45° B. 60° C. 50° D. 55°

【答案】C

【解析】

试题利用线段垂直平分线的性质知∠E=∠EAC AC=CE,等量代换得AB=CE=AC,利用三角形的外角性质得∠B=∠ACB=2∠E,从而根据三角形的内角和计算.

解:连接AC

∵CM⊥AE

∴∠E=∠EAC AC=CE(线段垂直平分线的性质)

∵AB+BC=BE(已知)

BC+CE=BE

∴AB=CE=AC(等量代换)

∴∠B=∠ACB=2∠E(外角性质)

∵∠B+∠E+105°=180°(三角形内角和)

∴∠B+∠B+105°=180°

解得∠B=50°

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某地区住宅用电之电费计算规则如下:每月每户不超过50度时,每度以4元收费;超过50度的部分,每度以5元收费,并规定用电按整数度计算(小数部份无条件舍去).
(1)下表给出了今年3月份A,B两用户的部分用电数据,请将表格数据补充完整,

电量(度)

电费(元)

A

240

B

合计

90


(2)若假定某月份C用户比D用户多缴电费38元,求C用户该月可能缴的电费为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有一正方形AOBC,反比例函数 经过正方形AOBC对角线的交点,半径为(4﹣2 )的圆内切于△ABC,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC沿角平分线BD所在直线翻折,顶点A恰好落在边BC的中点E处,AE=BD,那么tan∠ABD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲,乙两辆汽车先后从A地出发到B地,甲车出发1小时后,乙车才出发,如图所示的l1和l2表示甲,乙两车相对于出发地的距离y(km)与追赶时间x(h)之间的关系:

(1)哪条线表示乙车离出发地的距离y与追赶时间x之间的关系?

(2)甲,乙两车的速度分别是多少?

(3)试分别确定甲,乙两车相对于出发地的距离y(km)与追赶时间x(h)之间的关系式;

(4)乙车能在1.5小时内追上甲车吗?若能,说明理由;若不能,求乙车出发几小时才能追上甲?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DE是边AB的垂直平分线,交ABE、ACD,连接BD

(1)若∠ABC=∠C,∠A=40°,求∠DBC的度数;

(2)若ABAC,且△BCD的周长为18cm,△ABC的周长为30cm,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?
(2)当标价总额是多少时,甲、乙超市实付款一样?
(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:﹣21+( ﹣π)0﹣| ﹣2|﹣2cos30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

为了缓解北京市西部地区的交通拥堵现象,市政府决定修建本市的第一条磁浮地铁线路﹣﹣“S1线.该线路连接北京城区与门头沟,西起石门营,向东经苹果园,终点至慈寿寺与6号线和10号线相接.为使该工程提前4个月完成,在保证质量的前提下,必须把工作效率提高10%.问原计划完成这项工程需用多少个月.

查看答案和解析>>

同步练习册答案