【题目】如图1,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B;抛物线(a≠0)过A,B两点,与x轴交于另一点C(-1,0),抛物线的顶点为D.
(1)求抛物线的解析式;
(2)在直线AB上方的抛物线上有一动点E,求出点E到直线AB的距离的最大值;
(3)如图2,直线AB与抛物线的对称轴相交于点F,点P在坐标轴上,且点P到直线 BD,DF的距离相等,请直接写出点P的坐标.
【答案】(1);(2)E到直线AB的距离的最大值为;(3)点P的坐标为:(0,1),(,0),(0,),(7,0).
【解析】
(1)由一次函数求出点A,B的坐标,再将A,C坐标代入中即可解答;
(2)通过证明△ENM∽△AOB,得到EN=,设E(m,),M(m,),表达出EM,再由二次函数的性质求出最大值;
(3)分当点P在∠BDF平分线上、外角平分线上两种情况,分别求解即可.
解:(1)在中,当x=0时,y=;当y=0时,x=3,
即A(3,0),B(0,),
将A(3,0),C(-1,0)代入得:
,解得:,
∴抛物线的解析式为:.
(2)过点E作EM⊥x轴交AB于M,过E作EN⊥AB于N,
点E到AB的距离为EN,
∵EM∥y轴,
∴∠EMN=∠OBA,
又∵∠ENM=∠AOB,
∴△ENM∽△AOB,
∴,
在Rt△AOB中,OA=3,OB=,
由勾股定理得:AB=,
∴,
即EN=,
设E(m,),M(m,),
则EM=-()=,
∴EN=
=
=,
∴当m=时,E到直线AB的距离的最大值为.
(3)∵点P到直线BD,DF的距离相等,
∴点P在∠BDF或∠BDF邻补角的平分线上,如图所示,
由,则 D点坐标为(1,3),
∵B(0,),
∴BD=,
∵DP平分∠BDF,
∴∠BDP=∠PDF,
∵DF∥y轴,
∴∠BPD=∠PDF,
∴∠BPD=∠BDP,
∴BD=BP,
∴P(0,1),
设直线PD的解析式为:y=kx+n,
∴n=1,k+n=3,
即直线PD的解析式为:y=2x+1,
当y=0时,x=,
∴当P在∠BDF的角平分线上时,坐标为(0,1)或(,0);
同理可得:当P在∠BDF邻补角的平分线上时,坐标为:(0,)或(7,0),
综上所述,点P的坐标为:(0,1),(,0),(0,),(7,0).
科目:初中数学 来源: 题型:
【题目】将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B的对应点E落在坐标平面内,当△ADE是等腰直角三角形时,点E的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,荧光屏上的甲、乙两个光斑(可看作点)分别从相距8cm的A,B两点同时开始沿线段AB运动,运动工程中甲光斑与点A的距离S1(cm)与时间t(s)的函数关系图象如图2,乙光斑与点B的距离S2(cm)与时间t(s)的函数关系图象如图3,已知甲光斑全程的平均速度为1.5cm/s,且两图象中△P1O1Q1≌P2Q2O2,下列叙述正确的是( )
A. 甲光斑从点A到点B的运动速度是从点B到点A的运动速度的4倍
B. 乙光斑从点A到B的运动速度小于1.5cm/s
C. 甲乙两光斑全程的平均速度一样
D. 甲乙两光斑在运动过程中共相遇3次
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】哈市某中学为了丰富校园文化生活.校学生会决定举办演讲、歌唱、绘画、舞蹈四项比赛,要求每位学生都参加.且只能参加一项比赛.围绕“你参赛的项目是什么?(只写一项)”的问题,校学生会在全校范围内随机抽取部分学生进行问卷调查。将调查问卷适当整理后绘制成如图所示的不完整的条形统计图.其中参加舞蹈比赛的人数与参加歌唱比赛的人数之比为1:3.请你根据以上信息回答下列问题:
(1)通过计算补全条形统计图;
(2)在这次调查中,一共抽取了多少名学生?
(3)如果全校有680名学生,请你估计这680名学生中参加演讲比赛的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.
(1)求证:△ABC≌△DEF;
(2)求证:AD与BE互相平分;
(3)若BF=5,FC=4,直接写出EO的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在第二届数字中国建设峰会召开之际,某校举行了第二届“掌握新技术,走进数时代”信息技术应用大赛,将该校八年级参加竞赛的学生成绩统计后,绘制成如下统计图表(不完整):
成绩频数分布统计表
组别 | A | B | C | D |
成绩x(分) | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x<100 |
人数 | 10 | m | 16 | 4 |
请观察上面的图表,解答下列问题:
(1)统计表中m= ,D组的圆心角为 °;
(2)D组的4名学生中,有2名男生和2名女生.从D组随机抽取2名学生参加5G体验活动,请你画出树状图或用列表法求:
①恰好1名男生和1名女生被抽取参加5G体验活动的概率;
②至少1名女生被抽取参加5G体验活动的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国的经济总量已居世界第二,人民富裕了,有的家庭拥有多种车型.小红家有A、B、C三种车型,已知3辆A型车的载重量与4辆B型车的载重量之和刚好等于2辆C型车的载重量;4辆B型车的载重量与1辆C型车的载重量之和刚好等于6辆A型车的载重量.现有一批货物,原计划用C型车10次可全部运完,由于C型车另有运输任务,现在安排A型车单独装运12次,余下的货物由B型车单独装运刚好可以全部运完,则B型车需单独装运_____次(每辆车每次都满载重量)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.
(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?
(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com