精英家教网 > 初中数学 > 题目详情

【题目】如图1,在矩形ABCD中,点ECD上,∠AEB90°,点P从点A出发,沿AEB的路径匀速运动到点B停止,作PQCD于点Q,设点P运动的路程为xPQ长为y,若yx之间的函数关系图象如图2所示,当x6时,PQ的值是(  )

A. 2B. C. D. 1

【答案】B

【解析】

由图象可知:AE3BE4,根据勾股定理可得AB=5,x6时,点PBE上,先求出PE的长,再根据PQEBAE,求出PQ的长.

解:由图象可知:

AE3BE4

RtABE中,∠AEB90°

AB==5

x6时,点PBE上,如图,

此时PE=4-(7-x)=x-3=6-3=3

∵∠AEB90°, PQCD

∴∠AEB=PQE=90°,

在矩形ABCD中,AB//CD

∴∠QEP=ABE

PQEBAE, =

=

PQ=

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.

1)完成下列填空:

已知

用“<”或“>”填空

5+2_____3+1

31_____52

12_____4+1

2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).请你说明上述性质的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=2x与反比例函数y=(x>0)的图象交于点A(4,n),ABx轴,垂足为B.

(1)求k的值;

(2)点CAB上,若OC=AC,求AC的长;

(3)点Dx轴正半轴上一点,在(2)的条件下,若SOCD=SACD,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b与反比例函数y的图象相交于A23),B(﹣3n)两点.

1)求一次函数与反比例函数的解析式;

2)根据所给条件,请直接写出不等式kx+b的解集;

3)过点A作直线l,若直线l与两坐标轴围成的三角形面积为8,请直接写出满足条件的直线l的条数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一元二次方程x2﹣4x+k=0有两个不相等的实数根

(1)求k的取值范围;

(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0x2+mx﹣1=0有一个相同的根,求此时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.

(1)求该抛物线的函数解析式.

(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.ODBC于点F,当SCOF:SCDF=3:2时,求点D的坐标.

(3)如图2,点E的坐标为(0,),点P是抛物线上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂家以两种原料,利用不同的工艺手法生产出了甲、乙、丙三种袋装产品,其中,甲产品每袋含千克原料、千克原料;乙产品每袋含千克原料、千克原料;丙产品每袋含有千克原料、千克原料.若丙产品每袋售价元,则利润率为.某节庆日,该电商进行促销活动,将甲、乙、丙各一袋合装成礼品盒,每购买一个礼品盒可免费赠送一袋乙产品,这样即可实现利润率为,则礼盒售价为_____元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ACB90°AC3BC7,点P是边AC上不与点AC重合的一点,作PDBCAB边于点D

1)如图1,将APD沿直线AB翻折,得到AP'D,作AEPD.求证:AEED

2)将APD绕点A顺时针旋转,得到AP'D',点PD的对应点分别为点P'D'

①如图2,当点D'ABC内部时,连接PCD'B,求证:AP'C∽△AD'B

②如果APPC51,连接DD',且DD'AD,那么请直接写出点D'到直线BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴于点(点在点的左侧),与轴交于点.将抛物线绕点旋转,得到新的抛物线,它的顶点为,与轴的另一个交点为.若四边形为矩形,则应满足的关系式为(

A. B. C. D.

查看答案和解析>>

同步练习册答案