精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,线段AB的两个端点的坐标分别为A(﹣3,0),B(0,4).
(1)画出线段AB先向右平移3个单位,再向下平移4个单位后得到的线段CD,并写出A的对应点D的坐标,B的对应点C的坐标;
(2)连接AD、BC,判断所得图形的形状.(直接回答,不必证明)

【答案】
(1)解:如图所示,CD即为所求作的线段,

D(0,﹣4),C(3,0);


(2)解:∵AC、BD互相垂直平分,

∴四边形ABCD是菱形


【解析】(1)根据网格结构找出点C、D的位置,然后连接即可,再根据平面直角坐标系写出点C、D的坐标;(2)根据对角线互相垂直平分的四边形是菱形判定.
【考点精析】利用菱形的判定方法对题目进行判断即可得到答案,需要熟知任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.

(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.
①求证:BD⊥CF.
②当AB=2,AD=3 时,求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.

(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒 个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).

(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;
(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;
(3)当t为何值时,△MNA是一个等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“节能环保,低碳生活”是我们倡导的一种生活方式,某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台,三种家电的进价和售价如表所示:

价格
种类

进价
(元/台)

售价
(元/台)

电视机

5000

5500

洗衣机

2000

2160

2400

2700


(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机的数量的3倍.请问商场有哪几种进货方案?
(2)在“2012年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金每购1000元送50元家电消费券一张、多买多送”的活动.在(1)的条件下,若三种电器在活动期间全部售出,商家预估最多送出多少张?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料,然后解答问题:
在平面直角坐标系中,以任意两点P(x1 , y1),Q(x2 , y2)为端点的线段的中点坐标为( ).如图,在平面直角坐标系xOy中,双曲线y= (x<0)和y= (x>0)的图象关于y轴对称,直线y= + 与两个图象分别交于A(a,1),B(1,b)两点,点C为线段AB的中点,连接OC、OB.

(1)求a、b、k的值及点C的坐标;
(2)若在坐标平面上有一点D,使得以O、C、B、D为顶点的四边形是平行四边形,请求出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为庆祝中国共产党建党90周年,6月中旬我市某展览馆进行党史展览,把免费参观票分到学校.展览馆有2个验票口A、B(可进出),另外还有2个出口C、D(不许进).小张同学凭票进入展览大厅,参观结束后离开.
(1)小张从进入到离开共有多少种可能的进出方式?(要求用列表或树状图)
(2)小张不从同一个验票口进出的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张宽为6cm的平行四边形纸带ABCD如图1所示,AB=10cm,小
明用这张纸带将底面周长为10cm直三棱柱纸盒的侧面进行包贴(要求包
贴时没有重叠部分). 小明通过操作后发现此类包贴问题可将直三棱柱的
侧面展开进行分析.


(1)若纸带在侧面缠绕三圈,正好将这个直三棱柱纸盒的侧面全部包贴满.则纸带AD的长度为 cm;
(2)若AD=100cm,纸带在侧面缠绕多圈,正好将这个直三棱柱纸盒的侧面全部包贴满.则这个直三棱柱纸盒的高度是cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E.
(1)求证:PB为⊙O的切线;
(2)若tan∠ABE= ,求sin∠E.

查看答案和解析>>

同步练习册答案