精英家教网 > 初中数学 > 题目详情

求作一个点,使它到已知角两边距离相等,并且这点在已知直线上.

已知:如图所示的∠ABC和直线l

求作:

作法:

答案:
解析:

  求作:一点P,使P点到∠ABC两边的距离相等,且P点在l上.

  作法:作∠ABC的角平分线BM,交直线l于点P.点P就是所求作的点.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-6,0)、B(2,0),与y轴交于点C(0,-6).
(1)求此抛物线的函数表达式,写出它的对称轴;
(2)若在抛物线的对称轴上存在一点M,使△MBC的周长最小,求点M的坐标;
(3)若点P(0,k)为线段OC上的一个不与端点重合的动点,过点P作PD∥CM交x于点D,连接MD、MP,设△MPD的面积为S,求当点P运动到何处时S的值最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图1,在直角坐标系中,有等腰梯形ABCD,AD∥BC,AB=CD,抛物线y=
3
6
(x-2)(x-6)
交x轴于点E、C(点C在点E的右侧),交y轴于点A,它的对称轴过点D,顶点为点F;
(1)求点A、B、C、D的坐标;
(2)点P是抛物线在第一象限内的点,它到边AB、BC所在直线的距离相等,求出点P的坐标;
(3)如图2,若点Q是线段AD上的一个动点,AQ=t,以BQ为一边作∠BQR=120°,交CD于点R,连接ER、FC,试探究:是否存在t的值,使ER∥FC?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)探索:请你利用图1验证勾股定理.
(2)应用:如图2,已知在Rt△ABC中,∠ACB=90°,AB=6,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2的值等于
9
2
π
9
2
π
.(请直接写出结果)
(3)拓展:如图3所示,MN表示一条铁路,A、B是两个城市,它们到铁路所在直线MN的垂直距离分别为AC=40千米,BD=60千米,且CD=80千米,现要在CD之间设一个中转站O,求出O应建在离C点多少千米处,才能使它到A、B两个城市的距离相等.

查看答案和解析>>

科目:初中数学 来源:2012年浙江省杭州市十五中中考数学二模试卷(解析版) 题型:解答题

已知,如图1,在直角坐标系中,有等腰梯形ABCD,AD∥BC,AB=CD,抛物线交x轴于点E、C(点C在点E的右侧),交y轴于点A,它的对称轴过点D,顶点为点F;
(1)求点A、B、C、D的坐标;
(2)点P是抛物线在第一象限内的点,它到边AB、BC所在直线的距离相等,求出点P的坐标;
(3)如图2,若点Q是线段AD上的一个动点,AQ=t,以BQ为一边作∠BQR=120°,交CD于点R,连接ER、FC,试探究:是否存在t的值,使ER∥FC?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案