【题目】在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.
(1)补全图1;
(2)如图1,当∠BAC=90°时,
①求证:BE=DE;
②写出判断DF与AB的位置关系的思路(不用写出证明过程);
(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系.
【答案】(1)答案见解析(2)证明见解析(3)
【解析】分析:(1)按要求作图即可;
(2)①延长AE,交BC于点H,由等腰三角形三线合一的性质得出AH⊥BC且BH=HC.然后利用平行线分线段成比例定理即可证明结论;
②延长FE,交AB于点G,利用等腰三角形的性质证得GE=EF,再证△BEG≌△DEF即可得出DF与AB的位置关系;
(3)利用锐角三角形即可得出答案.
详解:(1)补全图1;
(2)①延长AE,交BC于点H.
∵AB=AC, AE平分∠BAC,
∴AH⊥BC于H,BH=HC.
∵CD⊥BC于点C,
∴EH∥CD.
∴BE=DE.
②延长FE,交AB于点G.
由AB=AC,得∠ABC=∠ACB.
由EF∥BC,得∠AGF=∠AFG.
得AG=AF.
由等腰三角形三线合一得GE=EF.
由∠GEB=∠FED,可证△BEG≌△DEF.
可得∠ABE=∠FDE.
从而可证得DF∥AB.
(3)如图所示,
由DF∥AB且GE=EF,
≌,
∴BG=DF,
由EF∥BC,BD平分∠ABC,
可证是等腰三角形,
∴BG=GF,
∵,
∴.
科目:初中数学 来源: 题型:
【题目】定义:如图1,在△ABC和△ADE中,AB=AC=AD=AE,当∠BAC+∠DAE=180°时,我们称△ABC与△DAE互为“顶补等腰三角形”,△ABC的边BC上的高线AM叫做△ADE的“顶心距”,△ADE的边DE上的高线AN叫做△ABC的“顶心距”,点A叫做“顶补中心”.
特例感知
(1)图2,图3中,△ABC与△DAE互为“顶补等腰三角形”,AM,AN是“顶心距”,
①如图2,当∠BAC=90°时,AM与DE之间的数量关系为AM=_________DE,
②如图3,当∠BAC=120°,BC=6时,AN的长为_________,
猜想论证
(2)在图1中,当∠BAC为任意角时,猜想AM与DE之间的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CD=2,在四边形|ABCD的内部是否存在点P,使 得△PAD与△PBC互为“顶补等腰三角形”?若存在,请给予证明,并求△PBC的“顶心距”的长;若不存在, 请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下面三行数:
-1,4,-9, 16,-25,…; ①
0,6,-6, 20,-20,…; ②
-2,3,-10,15,-26,…; ③
(1)分析第一行数的排列规律,请用代数式表示第n个数.
(2)分析第②③行数分别与第①行数的关系.请用代数式表示每行的第n个数.
(3)取每行的第n个数,计算这三个数的和,并求当n=100时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCO中,点O为坐标原点,点B的坐标为(﹣4,3),点A,C在坐标轴上,将直线l1:y=﹣2x+3向下平移6个单位长度得到直线l2.
(1)求直线l2的解析式;
(2)求直线l2与两坐标轴围成的三角形的面积S;
(3)已知点M在第二象限,且是直线l2上的点,点P在BC边上,若△APM是等腰直角三角形,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近日,崂山区教体局对参加2018年崂山区禁毒知识竞赛的2500名初中学生的初试成绩(成绩均为整数)进行一次抽样调查,所得数据如下表:
成绩分组 | 60.5~70.5 | 70.5~80.5 | 80.5~90.5 | 90.5~100.5 |
频数 | 50 | 150 | 200 | 100 |
(1)抽取样本的总人数;
(2)根据表中数据,补全图中频数分布直方图;
(3)若规定初试成绩在90分以上(不包括90分)的学生进入决赛,则全区进入决赛的初中学生约有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点叫格点,请利用格点画图.
(1)在图①中过点画的平行线,并标出经过的格点M;
(2)在图①中过点画的垂线,交于点,并标出经过的格点N;
(3)三角形的面积是 ;
(4)网格中的“平移”是指只沿方格的格线(即上下或左右)运动,将图②中的任一条线段平移1格称为“1步”,要通过平移,使图②中的3条线段首尾相接组成一个三角形,最少需要移动 步.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )
A. 赛跑中,兔子共休息了50分钟
B. 乌龟在这次比赛中的平均速度是0.1米/分钟
C. 兔子比乌龟早到达终点10分钟
D. 乌龟追上兔子用了20分钟
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个不同形状的计算器(分别记为A,B)和与之匹配的保护盖(分别记为a,b)(如图所示)散乱地放在桌子上.
(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率.
(2)若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间 (单位:分钟)是关于x的一次函数,其关系如下表:
地铁站 | A | B | C | D | E |
x(千米) | 8 | 9 | 10 | 11.5 | 13 |
(分钟) | 18 | 20 | 22 | 25 | 28 |
(1)求关于x的函数表达式;
(2)若小李骑单车的时间(单位:分钟)与x满足关系式,且此函数图象的对称轴为直线x=11,当小李选择在C站出地铁时,还需骑单车18分钟才能到家,试求与x的函数关系式;
(3)试求李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的总时间最短?并求出最短时间(其他环节时间忽略不计)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com