解:(1)将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4),
将A(1,4)代入反比例解析式y=

得:k
1=4;
过A作AM⊥y轴,过D作DN⊥y轴,
∴∠AMB=∠DNB=90°,
∴∠BAM+∠ABM=90°,
∵AC⊥BD,即∠ABD=90°,
∴∠ABM+∠DBN=90°,
∴∠BAM=∠DBN,
∴△ABM∽△BDN,
∴

=

,即

=

,
∴DN=8,
∴D(8,-2),
将D坐标代入y=

得:k
2=-16;
(2)符合条件的F坐标为(0,-8),理由为:

由y=2x+2,求出C坐标为(-1,0),
∵OB=ON=2,DN=8,
∴OE=4,
可得AE=5,CE=5,AC=2

,BD=4

,∠EBO=∠ACE=∠EAC,
若△BDF∽△ACE,则

=

,即

=

,
解得:BF=10,
则F(0,-8).
综上所述:F点坐标为(0,-8)时,△BDF∽△ACE.
分析:(1)将A坐标代入一次函数解析式中求出m的值,确定出A的坐标,将A坐标代入反比例函数y=

中即可求出k
1的值;过A作AM垂直于y轴,过D作DN垂直于y轴,可得出一对直角相等,再由AC垂直于BD,利用同角的余角相等得到一对角相等,利用两对对应角相等的两三角形相似得到三角形ABM与三角形BDN相似,由相似得比例,求出DN的长,确定出D的坐标,代入反比例函数y=

中即可求出k
2的值;
(2)在y轴上存在一个点F,使得△BDF∽△ACE,此时F(0,-8),理由为:由y=2x+2求出C坐标,由OB=ON=2,DN=8,可得出OE为三角形BDN的中位线,求出OE的长,进而利用两点间的距离公式求出AE,CE,AC,BD的长,以及∠EBO=∠ACE=∠EAC,若△BDF∽△ACE,得到比例式,求出BF的长,即可确定出此时F的坐标,
再利用BD=DF时,进而得出即可.
点评:此题考查了反比例综合题,涉及的知识有:相似三角形的判定与性质,待定系数法确定函数解析式,坐标与图形性质,熟练掌握待定系数法是解本题的关键.