精英家教网 > 初中数学 > 题目详情

【题目】如图1,△ACB和△DCE均为等边三角形,若B,D,E在同一直线上,连接AE.

(1)请你在图中找出一个与△AEC全等的三角形:
(2)∠AEB的度数为;CE,AE,BE的数量关系为
(3)如图2,△ACB是等腰直角三角形,∠AEB=90°,连接CE,过点C作CD⊥CE,交BE于点D,试探究CE,AE,BE的数量关系,并说明理由.

(4)如图3,在正方形ABCD中,CD=5 ,点P为正方形ABCD外一点,∠APC=90°,且AP=6,试求点P到CD的距离.

【答案】
(1)△BDC
(2)60°;CE+AE=BE
(3)

解:∵CD⊥CE,∠ACB=90°,

∴∠ECA=∠DCB,

∵∠AEB=90°,∠ACB=90°,

∴A、E、C、B四点共圆,

∴∠EAC=∠DBC,

在△AEC和△BDC中,

∴△AEC≌△BDC,

∴AE=BD,CE=CD,

∴△ECD是等腰直角三角形,

∴ED= CE,

∴BE=DE+BD= CE+AE


(4)

解:当点P在AD上方时,连接AC、PD,作PH⊥CD交AD的延长线于H,

∵AD=5

∴AC=10,

则PC= =8,

由拓展探究可知,PD= =

∵PH∥AD,

∴∠DPH=∠ADP,

∴∠DPH=∠ACP,

∴PH=PD× =

当点P在AB的左侧时,同理PH=


【解析】解:(1)△AEC≌△BDC,
证明:∵△ACB和△DCE均为等边三角形,
∴∠ECD=∠ACB=60°,
∴∠ECA=∠DCB,
在△AEC和△BDC中,

∴△AEC≌△BDC,
所以答案是:△BDC;
⑵∠CDB=180°﹣∠CDE=120°,
∵△AEC≌△BDC,
∴∠AEC=∠CDB=120°,AE=BD,
∴∠AEB=60°,
BE=DE+BD=CE+AE;
所以答案是:60°;CE+AE=BE;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有4各不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.
(1)请用树形图法或列表法,表示某个同学抽签的各种可能情况.
(2)小张同学对物理的①、②和化学的b、c号实验准备得较好,他同时抽到两科都准备的较好的实验题目的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细观察下面由组成的图案和算式,解答问题:

1+3=4=22

1+3+5=9=32

1+3+5+7=16=42

1+3+5+7+9=25=52

(1)请计算:

1+3+5+7+9+ … +19=

(2)请猜想:

1+3+5+7+9+ … +(2n-1)+(2n+1)+(2n+3)=

(3)请用上述规律计算:

103+105+107+ … +2013+2015

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 1,∠AOC=∠BOD=90°.

(1)如果DOC=28°,那么AOB 的度数是多少?

(2)∠AOD BOC(填“>”、“=”“<”),理由是

(3)在图2 中利用能够画直角的工具再画一个与COB 相等的角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图(1)为一波浪式相框(厚度忽略不计),内部可插入占满整个相框的照片一张,如图(2),主视图(不含图中虚线部分)为两端首尾相连的等弧构成,左视图和俯视图均为长方形(单位:cm):
(1)图中虚线部分的长为cm,俯视图中长方形的长为cm;
(2)求主视图中的弧所在圆的半径;
(3)试计算该相框可插入的照片的最大面积(参考数据:sin22.5°≈ ,cos22.5°≈ ,tan22.5°≈ ,计算结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算:(﹣ 2+2cos30°﹣|﹣ |﹣(π﹣2017)0
(2)化简:( ﹣x+1)÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=3,BC=4,点E是线段CB上的异于B、C的动点,AF⊥AE交线段CD的延长线于点F,EF与AD交于点M.

(1)求证:△ABE∽△ADF;
(2)若AE⊥BD,求BE长;
(3)若△AEM是以AE为腰的等腰三角形,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,AE与DH交于O,若AE=DH,求证:AE⊥DH;

(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,EF与GH交于O,若EF=HG,探究线段EF与HG的位置关系,并说明理由;

(3)如图3所示,在(2)问条件下,若HF∥GE,试探究线段FH、线段EG与线段EF的数量关系,并说明.

查看答案和解析>>

同步练习册答案