精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.

(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

【答案】
(1)证明:∵DE⊥BC,

∴∠DFB=90°,

∵∠ACB=90°,

∴∠ACB=∠DFB,

∴AC∥DE,

∵MN∥AB,即CE∥AD,

∴四边形ADEC是平行四边形,

∴CE=AD


(2)解:四边形BECD是菱形,

理由是:∵D为AB中点,

∴AD=BD,

∵CE=AD,

∴BD=CE,

∵BD∥CE,

∴四边形BECD是平行四边形,

∵∠ACB=90°,D为AB中点,

∴CD=BD,

四边形BECD是菱形


(3)当∠A=45°时,四边形BECD是正方形,理由是:

解:∵∠ACB=90°,∠A=45°,

∴∠ABC=∠A=45°,

∴AC=BC,

∵D为BA中点,

∴CD⊥AB,

∴∠CDB=90°,

∵四边形BECD是菱形,

∴菱形BECD是正方形,

即当∠A=45°时,四边形BECD是正方形


【解析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.
【考点精析】本题主要考查了平行四边形的判定与性质和菱形的判定方法的相关知识点,需要掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积;任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】x=2时,代数式ax-2x的值为4,当x=-2时,这个代数式的值为(

A. -8B. -4C. -2D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国“钓鱼岛”周围海域面积约170 000km2 , 该数用科学记数法可表示为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,以AB为边在正方形内作等边△ABE,连接DE,CE,则∠CED的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,ABCD中,BE,CF分别是∠ABC和∠BCD的一平分线,BE,CF相交于点O.

(1)求证:BE⊥CF;
(2)试判断AF与DE有何数量关系,并说明理由;
(3)当△BOC为等腰直角三角形时,四边形ABCD是何特殊四边形?
(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是(  )

A. b2>4ac

B. ax2+bx+c≥﹣6

C. 若点(﹣2,m),(﹣5,n)在抛物线上,则m>n

D. 关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P在线段AB的垂直平分线上,PA=6,则PB=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线lykx+5k+12k0),当k变化时,原点到这条直线的距离的最大值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是(
A.20πcm2
B.20cm2
C.40πcm2
D.40cm2

查看答案和解析>>

同步练习册答案