【题目】如图,四边形是以原点为对称中心的矩形,,,和分别与轴交于点、,连接.
(1)写出点和点的坐标;
(2)求四边形的面积;
(3)判断点在矩形的内部还是外部;
(4)要使直线与矩形没有公共点,直接写出的取值范围.
【答案】(1),;(2)5;(3)点在矩形的内部;(4) 或
【解析】
解:(1)∵四边形ABCD是以原点O为对称中心的矩形,
∴点A和点C、点B和点D关于原点对称,
∵,
∴,;
(2)设直线CD的解析式为,
将点C、D的坐标分别代入得,
解得,
∴直线CD的解析式为,
当时,,
∴,
∵,,,
∴,,,
如解图,过点O作、,垂足分别为点M、N,
∵四边形ABCD为矩形,
∴,,
如解图,连接OC,
∴;
(3)在直线CD的解析式上,当时,,
∵,
∴点在点的上方,
又∵,
∴点在矩形的内部;
(4) 或.
【解法提示】当直线过A或C点时,直线与矩形只有一个公共点,
把代入,得,解得,
把代入,得,解得,
∴当直线与矩形ABCD没有公共点时,m的取值范围为或.
科目:初中数学 来源: 题型:
【题目】如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是( )
A. 12π+18 B. 12π+36 C. 6π+18 D. 6π+36
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点的坐标,将线段绕点按顺时针方向旋转45°,再将其长度伸长为的2倍,得到线段;又将线段绕点按顺时针方向旋转45°,长度伸长为的2倍,得到线段;如此下去,得到线段、,……,(为正整数),则点的坐标是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,过点B的直线与抛物线的另一个交点为D,与抛物线的对称轴交于点E,与y轴交于点F,且,△OBE的面积为.
(1)求抛物线的解析式;
(2)设P为已知抛物线上的任意一点,当△ACP的面积等于△ACB的面积时,求点P的坐标;
(3)点Q(0,m)是y轴上的动点,连接AQ、BQ,当∠AQB为钝角时,则m的取值范围是 .(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2﹣ax﹣2a(a为常数且不等于0)与x轴的交点为A,B两点,且A点在B的右侧.
(1)当抛物线经过点(3,8),求a的值;
(2)求A、B两点的坐标;
(3)若抛物线的顶点为M,且点M到x轴的距离等于AB的3倍,求抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是( )
A.2010年至2014年间工业生产总值逐年增加
B.2014年的工业生产总值比前一年增加了40亿元
C.2012年与2013年每一年与前一年比,其增长额相同
D.从2011年至2014年,每一年与前一年比,2014年的增长率最大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】假期里,小红和小惠去买菜,三次购买的西红柿价格和数量如下表:
单价/(元/千克) | 4 | 3 | 2 | 合计 |
小红购买的数量/千克 | 1 | 2 | 3 | 6 |
小惠购买的数量/千克 | 2 | 2 | 2 | 6 |
(1)小红和小惠购买西红柿数量的中位数、众数是多少?
(2)从平均价格看,谁买的西红柿要便宜些.请思考下面小亮和小明的说法,你认为谁说得对?为什么?
小亮的说法
每次购买单价相同,购买总量也相同,平均价格应该也一样,都是(元/千克),所以两人购买的西红柿一样便宜.
小明的说法
购买的总量虽然相同,但小红花了16元,小惠花了18元,平均价格不一样,所以小红购买的西红柿便宜.
(3)小明在直角坐标系中画出反比例函数的图象,图象经过点(如图),点的横、纵坐标分别为小红和小惠购买西红柿价格的平均数.
①求此反比例函数的关系式;
②判断点是否在此函数图象上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com