【题目】已知二次函数
(1)用配方法化成顶点式;
(2)求出顶点坐标、对称轴、最小值;
(3)求出抛物线与x轴、y轴交点坐标.
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=FM
(2)当AE=1时,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200-2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点A在x轴的负半轴上,点B的坐标为(﹣2,﹣4),抛物线y=ax2+bx的对称轴为x=﹣5,该抛物线经过点A、B,点E是AB与对称轴x=﹣5的交点.
(1)如图1,点P为直线AB下方的抛物线上的任意一点,在对称轴x=﹣5上有一动点M,当△ABP的面积最大时,求|PM﹣OM|的最大值以及点P的坐标.
(2)如图2,把△ABO沿射线BA方向平移,得到△CDF,其中点C、D、F分别是点A、B、O的对应点,且点F与点O不重合,平移过程中,是否存在这样的点F,使得以点A、E、F为顶点的三角形为等腰三角形?若存在,直接写出点F的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB=AC=10,BC=12,点E是弧BC的中点.
(1)过点E作BC的平行线交AB的延长线于点D,求证:DE是⊙O的切线.
(2)点F是弧AC的中点,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列图形都是由同样大小的菱形按照一定规律组成的,其中图①有3个小菱形,图②有7个小菱形,图③有13个小菱形……请根据排列规律完成下列问题:
(1)请写出图⑤中小菱形的个数;
(2)根据表中规律猜想,图中小菱形的个数与的关系式(不用说理);
(3)是否存在一个图形恰好由91个菱形组成?若存在,求出图形的序号;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.
求证:(1)DE是⊙O的切线;
(2)ME2=MDMN.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I为△ABC的内心.
(1)如图1,连接AI并延长交BC于点D,若AB=AC=3,BC=2,求ID的长;
(2)如图2,过点I作直线交AB于点M,交AC于点N.
①若MN⊥AI,求证:MI2=BMCN;
②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,,动点P在AB边上(不含端点A,B),以PC为直径作圆.圆与BC,CA分别相交于点M,N,则线段MN长度的最小值为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com