分析 连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC═3(x°+y°),即可得出答案.
解答 解:
连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∴∠CAE+4x°+∠ACE+4y°=180°,
∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°)
∴∠AEC=180°-(∠CAE+∠ACE)
=180°-[180°-(4x°+4y°)]
=4x°+4y°
=4(x°+y°),
∠AFC=180°-(∠FAC+∠FCA)
=180°-[180°-(3x°+3y°)]
=3x°+3y°
=3(x°+y°),
∴∠AFC=$\frac{3}{4}$∠AEC=$\frac{3}{4}$×72°=54°,
故答案为:54°.
点评 本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.
科目:初中数学 来源: 题型:解答题
项数 | 第一项 | 前两项 | 前三项 | 前四项 | 前五项 | |
式子① | 1 | 1+2 | 1+2+3 | 1+2+3+4 | 1+2+3+4+5 | |
式子② | 12 | 12+22 | 12+22+32 | 12+22+32+42 | 12+22+32+42+52 | |
两个式子的比 | 1 | $\frac{3}{5}$ | $\frac{3}{7}$ | $\frac{1}{3}$ | $\frac{3}{11}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 开口向下 | B. | 顶点坐标是(-1,2) | ||
C. | 对称轴是 x=1 | D. | 与 x 轴有两个交点 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com