精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD,AD∥BC,∠B=90°,AD=6,AB=4,BC=9.

(1)求CD的长为
(2)点P从点B出发,以每秒1个单位的速度沿着边BC向点C运动,连接DP.设点P运动的时间为t秒,则当t为何值时,△PDC为等腰三角形?

【答案】
(1)5
(2)解:过点D作DE⊥BC,垂足为E,由题意得PC=9﹣t,PE=6﹣t.

当CD=CP时,5=9﹣t,解得t=4;

当CD=PD时,E为PC中点,

∴6﹣t=3,

∴t=3;

当PD=PC时,PD2=PC2

∴(6﹣t)2+42=(9﹣t)2

解得t=

故t的值为t=3或4或


【解析】解:(1)过点D作DE⊥BC,垂足为E,∵AD∥BC,∠B=90°,
∴四边形ABED是矩形,
∴BE=AD=6,DE=AB=4,
∴CE=BC﹣BE=9﹣6=3,
在Rt△DCE中,CD= = =5.
所以答案是:5;
【考点精析】利用等腰三角形的判定和勾股定理的概念对题目进行判断即可得到答案,需要熟知如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.

(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式

(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积

(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.

(1)若∠BOC=62°,求∠DOE的度数;
(2)若∠BOC=a°,求∠DOE的度数;
(3)图中是否有互余的角?若有请写出所有互余的角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,点CAB的延长线上,CDO相切于点DCEAD,交AD的延长线于点E

1)求证:BDC=A

2)若CE=4DE=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各多项式中,能用公式法分解因式的是(

A. a2-b2+2ab B. a2+b2+ab C. 25n2+15n+9 D. 4a2+12a+9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简x(y-x)-y(x-y)得( )

A. x2-y2 B. y2-x2 C. 2xy D. -2xy

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在有理数的除法中,除以一个数等于乘以这个数的.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若a+b+1=0,则3a2+3b2+6ab的值是( )

A. 1 B. -1 C. 3 D. -3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角形的内心是(

A.三条中线的交点B.三条高的交点

C.三边的垂直平分线的交点D.三条角平分线的交点

查看答案和解析>>

同步练习册答案