精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,﹣3).

(1)求抛物线的解析式;
(2)如图(1),己知点H(0,﹣1).问在抛物线上是否存在点G (点G在y轴的左侧),使得SGHC=SGHA?若存在,求出点G的坐标;若不存在,请说明理由;
(3)如图(2),抛物线上点D在x轴上的正投影为点E(﹣2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.

【答案】
(1)

解:由题意得:

解得:

∴抛物线的解析式为:y=x2+2x﹣3


(2)

解:解法一:

假设在抛物线上存在点G,设G(m,n),显然,当n=﹣3时,△HGC不存在.

①当n>﹣3时,

可得SGHA=﹣ +v ,SGHC=﹣m,

∵SGHC=SGHA

∴m+n+1=0,

解得:

∵点G在y轴的左侧,

∴G(﹣ );

②当﹣4≤n<﹣3时,

可得SGHA= ,SGHC=﹣m,

∵SGHC=SGHA

∴3m﹣n﹣1=0,

解得:

∵点G在y轴的左侧,

∴G(﹣1,﹣4).

∴存在点G(﹣ )或G(﹣1,﹣4).

解法二:

①如图①,当GH∥AC时,点A,点C到GH的距离相等,

∴SGHC=SGHA

可得AC的解析式为y=3x﹣3,

∵GH∥AC,得GH的解析式为y=3x﹣1,

∴G(﹣1,﹣4);

②如图②,当GH与AC不平行时,

∵点A,C到直线GH的距离相等,

∴直线GH过线段AC的中点M( ,﹣ ).

∴直线GH的解析式为y=﹣x﹣1,

∴G(﹣

∴存在点G(﹣ )或G(﹣1,﹣4)


(3)

解:解法一:

如图③,

∵E(﹣2,0),

∴D的横坐标为﹣2,

∵点D在抛物线上,

∴D(﹣2,﹣3),

∵F是OC中点,

∴F(0,﹣ ),

∴直线DF的解析式为:y= x﹣

则它与x轴交于点Q(2,0),

则QB=QD,得∠QBD=∠QDB,∠BPE+∠EPF+∠FPD=∠DFP+∠PDF+∠FPD=180°,

∵∠EPF=∠PDF,

∴∠BPE=∠DFP,

∴△PBE∽△FDP,

得:PBDP=

∵PB+DP=BD=

∴PB=

即P是BD的中点,

连接DE,

∴在Rt△DBE中,PE= BD=

解法二:

可知四边形ABDC为等腰梯形,取BD的中点P′,

P′F= (OB+CD)=

P′F∥CD∥AB,

连接EF,可知EF=DF=

即EF=FP′=FD,

即△FEP′相似△FP′D,

即∠EP′F=∠FP′D=∠FDP′,

即∠EP′F和∠EPF重合,

即P和P′重合,

P为BC中点,

PE= BD= (△BDE为直角三角形).


【解析】(1)由抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,﹣3),利用待定系数法即可求得二次函数的解析式;(2)分别从GH∥AC与GH与AC不平行去分析,注意先求得直线GH的解析式,根据交点问题即可求得答案,小心不要漏解;(3)利用待定系数法求得直线DF的解析式,即可证得△PBE∽△FDP,由相似三角形的对应边成比例,即可求得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,AD是∠BAC的平分线,交BC于点M,交⊙O于点D.则图中相似三角形共有(
A.2对
B.4对
C.6对
D.8对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2012年6月5日是“世界环境日”,南宁市某校举行了“绿色家园”演讲比赛,赛后整理参赛同学的成绩,制作成直方图(如图).
(1)分数段在范围的人数最多;
(2)全校共有多少人参加比赛?
(3)学校决定选派本次比赛成绩最好的3人参加南宁市中学生环保演讲决赛,并为参赛选手准备了红、蓝、白颜色的上衣各1件和2条白色、1条蓝色的裤子.请用“列表法”或“树形图法”表示上衣和裤子搭配的所有可能出现的结果,并求出上衣和能搭配成同一种颜色的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠CAB=30°,AB=10,点D在线段AB上,AD=2.点P,Q以相同的速度从D点同时出发,点P沿DB方向运动,点Q沿DA方向到点A后立刻以原速返回向点B运动.以PQ为直径构造⊙O,过点P作⊙O的切线交折线AC﹣CB于点E,将线段EP绕点E顺时针旋转60°得到EF,过F作FG⊥EP于G,当P运动到点B时,Q也停止运动,设DP=m.
(1)当2<m≤8时,AP=,AQ=.(用m的代数式表示)
(2)当线段FG长度达到最大时,求m的值;
(3)在点P,Q整个运动过程中, ①当m为何值时,⊙O与△ABC的一边相切?
②直接写出点F所经过的路径长是.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲,乙两辆汽车先后从A地出发到B地,甲车出发1小时后,乙车才出发,如图所示的l1和l2表示甲,乙两车相对于出发地的距离y(km)与追赶时间x(h)之间的关系:

(1)哪条线表示乙车离出发地的距离y与追赶时间x之间的关系?

(2)甲,乙两车的速度分别是多少?

(3)试分别确定甲,乙两车相对于出发地的距离y(km)与追赶时间x(h)之间的关系式;

(4)乙车能在1.5小时内追上甲车吗?若能,说明理由;若不能,求乙车出发几小时才能追上甲?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,第一次将OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).

(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为   ,B4的坐标为   

(2)按以上规律将OAB进行n次变换得到△OAnBn,则An的坐标为   ,Bn的坐标为   

(3)△OAnBn的面积为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有红、白两种颜色的小球(除颜色外其余都相同),其中红球3个,白球1个.
(1)求任意摸出一球是白球的概率;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用画树状图或列表的方法求两次摸出都是红球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片ABCD置于直角坐标系中,点A(4,0),点B(0,3),点D(异于点B、C)为边BC上动点,过点O、D折叠纸片,得点B′和折痕OD.过点D再次折叠纸片,使点C落在直线DB′上,得点C′和折痕DE,连接OE,设BD=t.

(1)当t=1时,求点E的坐标;
(2)设S四边形OECB=s,用含t的式子表示s(要求写出t的取值范围);
(3)当OE取最小值时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD交于点O,OEAB,垂足为点O,OP平分∠EODAOD=144°.

(1)求∠AOC与∠COE的度数;

(2)求∠BOP的度数.

【答案】(1)∠AOC=36°,COE=54°,(2)∠BOP=27°.

【解析】

(1)由邻补角定义可求得得∠AOC度数由垂直定义可得∠AOE=BOE=90°,由余角定义可求得∠COE;

(2)由邻补角定义可得∠DOE度数,由OO平分∠DOE,可得∠EOP度数再由余角定义可求得∠BOP度数.

(1)∵∠AOC+AOD=180°,AOD=144°,

∴∠AOC=180°-∠AOD=180°-144°=36°,

OEAB,

∴∠AOE=BOE=90°,

∴∠COE=AOE-AOC=90°-36°=54°,

(2)∵∠COE+DOE=180°,

∴∠DOE=180°-∠COE=180°-54°=126°,

OO平分∠DOE,

∴∠EOP=DOE=×126°=63°,

∴∠BOP=BOE-EOP=90°-63°=27°.

【点睛】

本题考查了对顶角、邻补角以及垂线的性质,是基础知识要熟练掌握.

型】解答
束】
27

【题目】如表为某市居民每月用水收费标准,(单位:元/m3).

用水量

单价

0<x≤20

a

剩余部分

a+1.1

(1)某用户1月用水10立方米,共交水费26元,则a=    /m3

(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费   元;

(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费81.6元.请问该用户实际用水多少立方米?

查看答案和解析>>

同步练习册答案