【题目】如图,在平面直角坐标系中,抛物线交轴于点,交轴正半轴于点,与过点的直线相交于另一点,过点作轴,垂足为.
(1)求抛物线的表达式;
(2)点在线段上(不与点、重合),过作轴,交直线于,交抛物线于点,连接,求面积的最大值;
(3)若是轴正半轴上的一动点,设的长为,是否存在,使以点为顶点的四边形是平行四边形?若存在,求出的值;若不存在,请说明理由.
【答案】(1) ;(2)当m= 时, ;(3)当时,以点为顶点的四边形是平行四边形.
【解析】
试题分析:(1)把点,代入抛物线得方程组,解方程组求得a、b的值,即可求得抛物线的表达式;(2)求的直线AD的表达式,设 (0<m<3),利用m表示出MP和PC的长,再利用三角形的面积公式构建出面积和m的二次函数模型,利用二次函数的性质即可解决问题;(3)点P在点C的左边和点P在点C的右边两种情况求解.
试题解析:
(1)把点,代入抛物线可得,
解得,
∴ ;
(2)∵,
∴A(0,1).
设直线AD的表达式为y=kx+b,
把A(0,1),代入得,,
解得,,
∴
设 (0<m<3),
∴MP= ,
∵ ,
∴PC=,
∴ ,
∴二次函数的顶点坐标为( )
即当m= 时, ;
(3)存在.
①点P在点C的左边,
∵OP的长为t,设(0<t<3),则,,
∴MN= ,
∵MN=CD= ,
∴,
∵△=-39,
∴方程无解;
②点P在点C的右边,
OP的长为t,设(t>3),则,,
∴MN= ,
∵MN=CD= ,
∴,
解得(舍去),;
综上所述,当时,以点为顶点的四边形是平行四边形.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形的顶点分别在轴,轴的正半轴上,且.若抛物线经过两点,且顶点在边上,对称轴交于点,点的坐标分别为.
(1)求抛物线的解析式;
(2)猜想的形状并加以证明;
(3)点在对称轴右侧的抛物线上,点在轴上,请问是否存在以点为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分10分)
如图,在□ABCD中,以点A为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.
(1)根据以上尺规作图的过程,求证四边形ABEF是菱形;
(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式能用平方差公式计算的是( )
A.(2a+b)(2b﹣a)
B.(x+1)(﹣x﹣1)
C.(﹣m﹣n)(﹣m+n)
D.(3x﹣y)(﹣3x+y)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.
(1)求这条直线的解析式;
(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0). ①求n的值及直线AD的解析式;
②求△ABD的面积;
③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.设生产A种产品的生产件数为x,A、B两种产品所获总利润为y(元).
(1)试写出y与x之间的函数关系式;
(2)求出自变量x的取值范围;
(3)利用函数的性质说明哪种生产方案获总利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1 , S2 , S3 , 若S1+S2+S3=10,则S2的值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P关于x轴的对称点P1的坐标是(4,-8),则P点关于y轴的对称点P2的坐标是( ).
A. (-4,-8) B. (4,-8) C. (4,8) D. (-4,8)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com