【题目】如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE,垂足E,AD⊥CE, 垂足为 D,AD=2.5cm,BE=1.7cm,
(1).求证:△BCE≌△CAD
(2).求DE 的长.
【答案】(1)证明见解析;(2)0.8cm
【解析】试题分析:(1)由AD⊥CE,BE⊥CE,可得∠E=∠ADC=90°,即 ∠CAD+∠ACD=90°,再由∠ACB=90°,可得∠BCE+∠ACD=90°,所以∠BCE=∠CAD, 利用AAS即可证得△BCE≌△CAD;(2) 由(1)得CE=AD, BE=CD,根据DE=CE-CD即可求得DE的长.
试题解析:
(1)∵AD⊥CE,BE⊥CE,
∴∠E=∠ADC=90°,
即 ∠CAD+∠ACD=90°,∵∠ACB=90°,
∴∠BCE+∠ACD=90°
∴∠BCE=∠CAD,
在△BCE和△CAD中,
∴△BCE≌△CAD(AAS),
(2).∵△BCE≌△CAD ,
∴CE=AD, BE=CD,
∴DE=CE-CD=2.5-1.7=0.8cm.
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的个数是
①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式从左边到右边的变形是因式分解的是( )
A.(a+1)(a﹣1)=a2﹣1
B.a2﹣6a+9=(a﹣3)2
C.x2+2x+1=x(x+2x)+1
D.﹣18x4y3=﹣6x2y23x2y
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人同时登西山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图11所示,乙在A处提速后的速度是甲登山速度的3.根据图象所提供的信息解答下列问题中正确的个数为( )
(1)甲登山的速度是每分钟10米.
(2)乙在A地提速时距地面的高度b为30米.
(3)登山9分钟时,乙追上了甲.
(4)乙在距地面的高度为165米时追上甲.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,海中一小岛有一个观测点A,某天上午观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.B处距离观测点30海里,若该渔船的速度为每小时30海里,问该渔船多长时间到达观测点A的北偏西60°方向上的C处?(计算结果用根号表示,不取近似值)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com