【题目】如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A’B’C’,若它移动的距离AA’等于1cm,则两个三角形重叠部分的面积为____________cm2.
【答案】1
【解析】
设AC与A′B′交于点E,A′C′与DC交于点F,由正方形的性质得到△ACD和△A′B′C′都为直角边为2cm的等腰直角三角形;从而判定出△AA′E也为等腰直角三角形,得到A′E=AA′=1cm,从而得到A′D的长;由正方形的性质与三角形的面积公式即可求出两三角形重叠的面积.
对图形进行点标注,
∵ 四边形ABCD是正方形边长为2cm,
∴ ∠ADC=90° ,AD=DC=2cm,∠DAC=45°,
∵△ A′ B′C′是由△ABC沿着AD方向平移得到的,
∴ AC∥A′C′,∠EA′A=90°,
∵ ∠DAC=45°,∠EA′A=90°,
∴△EAA′是等腰直角三角形,
∵AA′=1cm,△EAA′是等腰直角三角形,
∴
∵ AC∥A′C′,∠DAC=45°,
∴ ∠FA′D=45°,
∵∠DA′F=45°,∠ADC=90°,
∴△FDA′是等腰直角三角形,
∵ AD=2cm,AA′=1cm,
∴A′D=1cm,
∵△FDA′是等腰直角三角形,A′D=1cm,
同理可得到(cm2),
∴S阴影=(cm2).
故答案为:1.
科目:初中数学 来源: 题型:
【题目】问题发现:如图,已知:AB=AC,∠BAC=90°,直线m经过点A,过点B作BD⊥m于D, CE⊥m于E.我们把这种常见图形定义为“K”字图.很容易得到线段DE、BD、CE之间的数量关系是 .
拓展探究:如图2,若AB=AC,∠BAC=∠BDA=∠AEC,则线段DE、BD、CE之间的数量关系还成立吗?如果成立,请证明之.
解决问题:如图3,若AB=AC,∠BAC=∠BDA=∠AEC=120°,点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,BD=2,CE=4,求△DEF的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如图1,DE⊥AB,DF⊥AC,垂足分别为点E,F,求证:AE+AF=AD
(2)如图2,如果∠EDF=60,且∠EDF两边分别交边AB,AC于点E,F,那么线段AE,AF,AD之间有怎样的数量关系?并给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.
(1)求证:BE=CD;
(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,已知在△ABC和△DEF中,AB=EF,∠B=∠E,EC=BD
(1)试说明:△ABC≌△FED;
(2)若图形经过平移和旋转后得到图2,且有∠EDB=25°,∠A=66°,试求∠AMD的度数;
(3)将图形继续旋转后得到图3,此时D,B,F三点在同一条直线上,若DB=2DF,连接EB,已知△EFB的面积为5cm2,你能求出四边形ABED的面积吗?若能,请求出来;若不能,请你说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】体考在即,初三(1)班的课题研究小组对本年级530名学生的体育达标情况进行调查,制作出如图所示的统计图,其中1班有50人.(注:30分以上为达标,满分50分)根据统计图,解答下面问题:
(1)初三(1)班学生体育达标率和本年级其余各班学生体育达标率各是多少?
(2)若除初三(1)班外其余班级学生体育考试成绩在30﹣﹣40分的有120人,请补全扇形统计图;(注:请在图中分数段所对应的圆心角的度数)
(3)如果要求全年级学生的体育达标率不低于90%,试问在本次调查中,该年级全体学生的体育达标率是否符合要求?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l分别与x轴、y轴交于A,B两点,与双曲线y= (a≠0,x>0)分别交于D、E两点.
(1)若点D的坐标为(4,1),点E的坐标为(1,4):
①分别求出直线l与双曲线的解析式;
②若将直线l向下平移m(m>0)个单位,当m为何值时,直线l与双曲线有且只有一个交点?
(2)假设点A的坐标为(a,0),点B的坐标为(0,b),点D为线段AB的n等分点,请直接写出b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当点A位于 时,线段AC的长取到最大值,则最大值为 ;(用含a、b的式子表示)。
(2)如图2,若点A为线段BC外一动点,且BC=4,AB=2,分别以AB,AC为边,作等边和等边,连接CD,BE.
①图中与线段BE相等的线段是线段 ,并说明理由;
②直接写出线段BE长的最大值为 。
(3)如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值为 ,及此时点P的坐标为 。(提示:等腰直角三角形的三边长a、b、c满足a:b:c=1:1:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的周长为20,其中AB=8,
(1)用直尺和圆规作 AB 的垂直平分线 DE 交 AC 于点 E,垂足为 D,连接 EB;(保留作图痕迹,不要求写画法)
(2)在(1)作出 AB 的垂直平分线 DE 后,求△CBE 的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com