【题目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如图1,DE⊥AB,DF⊥AC,垂足分别为点E,F,求证:AE+AF=AD
(2)如图2,如果∠EDF=60,且∠EDF两边分别交边AB,AC于点E,F,那么线段AE,AF,AD之间有怎样的数量关系?并给出证明.
【答案】(1)见解析;,理由见解析.
【解析】
(1)连接BD,证△ABD是等边三角形,得∠ABD=∠BDA=∠DAB=60,再证△BDE≌△ADF(AAS),AF=BE,故AB=AE+BE;
(2)线段AE,AF,AD之间的数量关系为:,思路如下:
连接BD,模仿(1)证△BDE≌△ADF(AAS),得,所以.
∵在△ABC中,AB=AC,AD⊥BC,∠BAC=120
∴∠BAD=∠FAD=60
∵AD=AB
∴△ABD是等边三角形
∴∠ABD=∠BDA=∠DAB=60
∵DE⊥AB,DF⊥AC
∴∠BED=∠DFA=90
在△BDE和△ADF中,
∠BED=∠DFA,∠EBD=∠FAD,BD=DA,
∴△BDE≌△ADF(AAS)
∴AF=BE
∴AB=AE+BE
∴AB=AE+AF
解:线段AE,AF,AD之间的数量关系为:,理由如下:
连接BD,如图所示:
,,
是等边三角形,
,,
,
,
,
,
在与中,
,
≌,
,
,
.
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.
(1)求∠MON的度数;
(2)若题干中的∠AOB=,其他条件不变,求∠MON的度数;
(3)若题干中的∠BOC=(为锐角),其他条件不变,求∠MON的度数;
(4)综合(1)(2)(3)的结果,你能得出什么结论?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知不在同一条直线上的三点A,B,C.
(1)按下列要求作图(用尺规作图,不要求写做法,但要保留作图痕迹,并书写结论)
①分别作射线BA,线段AC;
②在线段BA的延长线上作AD=AC.
(2)若∠CAD比∠CAB大100°,则∠CAB的度数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=70°,∠BAC∶∠BCA=3∶2,CD⊥AD于点D,点E,A,D在同一直线上,且∠ACD=35°,求∠BAE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2, ),顶点坐标为N(﹣1, ),且与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式;
(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;
(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如,图中三角形ABC是格点三角形,其中S=2,N=0,L=6;图中格点多边形DEFGHI所对应的S,N,L分别是 . 经探究发现,任意格点多边形的面积S可表示为S=aN+bL+c,其中a,b,c为常数,则当N=5,L=14时,S= . (用数值作答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A’B’C’,若它移动的距离AA’等于1cm,则两个三角形重叠部分的面积为____________cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东30°、西北(即北偏西45°)方向上又分别发现了客轮B和海岛C.
(1)请分别在图①中画出表示客轮B和海岛C方向的射线OB,OC(不写作法);
(2)若图中有一艘渔船D,且∠AOD的补角是它的余角的3倍,在图②中画出表示渔船D方向的射线OD,并求渔船D在货轮O的方位角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com